Evidence Portfolio – Brain Health Subcommittee, Question 1

What is the relationship between physical activity and cognition?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?
- c. Does the relationship exist across the lifespan?
- d. Does the relationship vary for individuals with normal to impaired cognitive function (i.e., dementia)?
- e. What is the relationship between physical activity and brain structure and function?

Sources of Evidence: Existing Systematic Reviews and Meta-Analyses

Conclusion Statements and Grades

During the course of the review, it was determined that an accurate description of the state of the science for addressing this question would require several additional subcategories. As such, separate grades were assigned for acute bouts of physical activity (subquestion a), different age groups (subquestion c), and medical conditions with cognitive impairment (subquestion d).

Moderate evidence indicates a consistent association between greater amounts of physical activity and improvements in cognition, including performance on academic achievement tests; performance on neuropsychological tests, such as those involving processing speed, memory, and executive function; and risk of dementia. Such evidence has been demonstrated across numerous populations and individuals representing a gradient of normal to impaired cognitive health status. These effects are found across a variety of forms of physical activity, including aerobic activity (e.g., brisk walking), muscle-strengthening activity, yoga, and play activities (e.g., tag or other simple low organizational games). **PAGAC Grade: Moderate.**

Insufficient evidence is available to determine whether a dose-response relationship exists between physical activity and cognition because of conflicting findings across populations, cognitive outcomes, and experimental approaches. **PAGAC Grade: Not assignable.**

Strong evidence demonstrates that acute bouts of moderate-to-vigorous physical activity have a transient benefit for cognition, including attention, memory, crystalized intelligence, processing speed, and executive control during the post-recovery period following a bout of exercise. The findings indicate that the effects are larger in preadolescent children and older adults relative to other periods of the lifespan. **PAGAC Grade: Strong.**

Insufficient evidence is available to determine the effects of moderate-to-vigorous physical activity on cognition in children younger than age 5 years. **PAGAC Grade: Not assignable.**

Moderate evidence indicates an effect of both acute and long-term moderate-to-vigorous physical activity interventions on brain, cognition, and academic outcomes (e.g., school performance, psychometric profile of memory and executive function) in preadolescent children ages 5 to 13 years. **PAGAC Grade: Moderate.**

Insufficient evidence is available to determine whether a relationship exists between moderate-tovigorous physical activity and cognition in adolescents ages 14 to 18 years. **PAGAC Grade: Not assignable.**

Insufficient evidence exists regarding the effect of long-term moderate-to-vigorous physical activity on cognition in young or mid-life adults ages 18 to 50 years. **PAGAC Grade: Not assignable.**

Moderate evidence indicates an effect of long-term moderate-to-vigorous physical activity interventions on cognitive and brain outcomes in adults ages 50 years and older. **PAGAC Grade: Moderate.**

Limited evidence suggests that moderate-to-vigorous physical activity has a stronger effect on cognition in older compared to middle-aged and younger adults. Limited evidence also suggests a stronger effect of moderate-to-vigorous physical activity in older adult women compared to older adult men. **PAGAC Grade: Limited.**

No evidence was observed for an effect of physical activity on cognition as a function of socioeconomic status, race/ethnicity, or weight status. **PAGAC Grade: Not assignable**

Strong evidence demonstrates that greater amounts of physical activity are associated with a reduced risk of developing cognitive impairment, including Alzheimer's disease. **PAGAC Grade: Strong.**

Moderate evidence indicates that moderate-to-vigorous physical activity interventions can improve cognition in individuals with dementia. **PAGAC Grade: Moderate**

Moderate evidence indicates that moderate-to-vigorous physical activity can have beneficial effects on cognition in individuals with diseases or disorders that impair cognitive function, including attention deficit hyperactivity disorder, schizophrenia, multiple sclerosis, Parkinson's disease, and stroke. However, data are lacking for several other major conditions that are clinically associated with impaired cognitive function (i.e., autism, cancer). **PAGAC Grade: Moderate.**

Moderate evidence indicates that moderate-to-vigorous physical activity positively affects biomarkers of brain health and cognition. Physical activity-induced changes to these biomarkers have been observed across much of the lifespan, with considerably more evidence in children and older adults than in other age groups. **PAGAC Grade: Moderate.**

Limited evidence suggests that moderate-to-vigorous physical activity has a stronger effect on cognition in older compared to middle-aged and younger adults. Limited evidence also suggests a stronger effect of moderate-to-vigorous physical activity in older adult women compared to older adult men. No evidence was observed for an effect of physical activity on cognition as a function of socioeconomic status, race/ethnicity, or body mass index. **PAGAC Grade: Limited.**

Strong evidence demonstrates that acute bouts of moderate-to-vigorous physical activity have a transient benefit for cognition, including attention, memory, crystalized intelligence, processing speed, and executive control during the post-recovery period following a bout of exercise. The findings indicate that the effects are larger in preadolescent children and older adults relative to other periods of the lifespan. **PAGAC Grade: Strong.**

Description of the Evidence

An initial search for systematic reviews, meta-analyses, pooled analyses, and reports identified sufficient literature to answer the research question as determined by the Brain Health Subcommittee. Additional searches for original research were not needed.

Existing Systematic Reviews and Meta-Analyses

Overview

A total of 32 existing reviews were included. Of these, 12 were systematic reviews $\frac{1-12}{2}$ and 20 were metaanalyses. $\frac{13-32}{2}$ The existing reviews were published from 2003 to 2016.

The average number of studies included in the systematic reviews was 25, ranging from under $10^{2, \frac{6}{2}, \frac{7}{2}}$ to 137.⁴

The average number of studies included in the meta-analyses was 28, ranging from under $15^{13, 14, 19, 23, 31}$, $\frac{32}{10}$ to 79.¹⁵

Exposures

The majority of the included reviews examined physical activity interventions that incorporated aerobic activities as the primary mode of exercise. Many reviews included specific activities such as treadmill and/or biking, ⁷, ¹² active play, or active video-gaming, ², <u>4</u>, <u>5</u>, <u>8</u>, <u>30</u> and Tai Chi. ¹², <u>31</u> Some studies also examined resistance exercise⁹, <u>15-17</u>, <u>21</u> and one study examined sedentary behavior.⁶

Outcomes

Most included reviews addressed changes in test scores on cognitive functions, including executive control, memory, processing speed, and attention. In addition, other studies used neuroimaging tools (e.g., magnetic resonance imaging [MRI], functional MRI [fMRI], or electroencephalogram [EEG]) to measure any changes in brain structure and function.

Populations Analyzed

The table below lists the populations analyzed in each article.

Table 1. Populations Analyzed by All Sources of Evidence

	Sex	Age	Weight Status	Chronic Conditions	Psychiatric Disorder or Cognitive Impairment
Beckett, 2015		Adults ≥65			
Bustamante , 2016		Youth	Overweight, Obese		
Carson, 2016		Youth 0–5			
Cerrillo- Urbina, 2015		Youth 6–18			Attention deficit hyperactive disorder
Chang, 2012	Male, Female	All ages			
Colcombe, 2013		Adults 55– 80			
Den Heijer, 2016		All ages			Attention deficit hyperactivity disorder
Dinoff, 2016	Male, Female	Adults ≥18			
Donnelly, 2016		Youth 5–13			
Esteban- Cornejo, 2015		Youth 13–18			
Etnier, 2006		All ages			
Falck, 2016		Adults ≥40			
Firth, 2016		Adults 22.7– 55.0			Schizophrenia
Groot, 2016		Older adults			Cognitive Disability, Dementia
Halloway, 2016		Middle-aged and older adults			
Janssen, 2014		Youth 4–18			
Kelly, 2014		Adults ≥50			
Lambourne, 2010		Adults			
Li, 2016		Adults			
Ludyga, 2016		All ages			
McMorris, 2012		All ages			

	Sex	Age	Weight Status	Chronic Conditions	Psychiatric Disorder or Cognitive Impairment
Morrison, 2016		Adults		Multiple sclerosis	
Murray, 2014		Older adults		Parkinson's disease	
Roig, 2013		Adults			
Sexton, 2016		Older adults			
Smith, 2010		Adults			
Sofi, 2011		Adults			
Spruit, 2016		Youth 10–21			
Tan, 2016		Youth 3–25			Cognitive disability, autism spectrum disorder, attention deficit hyperactivity disorder
Wu, 2013		Adults ≥55 or older			
Zheng, 2016a		Adults ≥60			Mild cognitive impairment
Zheng, 2016b		Adults		Stroke	

Supporting Evidence

Existing Systematic Reviews and Meta-Analyses

Table 2. Existing Systematic Reviews and Meta-Analyses Individual Evidence Summary Tables

Meta-Analysis				
Citation: Beckett MW, Ardern CI, Rotondi MA. A meta-analysis of prospective studies on the role of				
	physical activity and the prevention of Alzheimer's disease in older adults. <i>BMC Geriatr.</i> 2015;15:9.			
	doi:10.1186/s12877-015-0007-2.			
Purpose: To determine	Abstract: BACKGROUND: The incidence of Alzheimer's disease is increasing			
if physical activity (PA)	as the global population ages. Given the limited success of pharmaceuticals			
protects against the	in preventing this disease, a greater emphasis on non-pharmaceutical			
onset of Alzheimer's	approaches is needed. The aim of this study was to quantify the association			
disease in adults over	between Alzheimer's disease and physical activity in older adults over the			
the age of 65.	age of 65 years. METHODS: A meta-analytic approach was used to			
Timeframe: 1966–2015	determine if physical activity reduced the risk of Alzheimer's disease in			
Total # of Studies: 9	individuals 65 years or older. Some evidence indicates that physical activity			
Exposure Definition:	may improve cognitive function in older adults, while other evidence is			
Study participants' PA	inconclusive. The purpose of this study was to examine if prevention of			
was recorded using	Alzheimer's disease is possible if started at a later age. The precise brain			
various methods. Two	changes that occur with the onset of Alzheimer's disease are not fully			
categories were	known, and therefore may still be influenced by preventative measures			
created for meta-	even in advancing age. Determining if physical activity can inhibit the onset			
analysis: physically	of the disease at any age may motivate individuals to adopt an "it's never			
active and physically	too late" mentality on preventing the onset of this debilitating disease.			
inactive (or non-active)	Longitudinal studies of participants who were 65 years or older at baseline			
group.	were included. A total of 20,326 participants from nine studies were			
Measures Steps: No	included in this analysis. RESULTS: The fixed effects risk ratio is estimated as			
Measures Bouts: No	0.61 (95% CI 0.52-0.73) corresponding to a statistically significant overall			
Examines HIIT: No	reduction in risk of Alzheimer's disease in physically active older adults			
Outcomes Addressed:	compared to their non-active counterparts. CONCLUSION: Physical activity			
Incidence of	was associated with a reduced risk of Alzheimer's disease in adults over the			
Alzheimer's disease as	age of 65 years. Given the limited treatment options, greater emphasis			
risk ratio or hazard	should be paid to primary prevention through physical activity amongst			
ratio.	individuals at high-risk of Alzheimer's disease, such as those with strong			
Examine	genetic and family history.			
Cardiorespiratory				
Fitness as Outcome:				
No				
Populations Analyzed:	Author-Stated Funding Source: Ontario Brain Institute			
Adults ≥65				

Systematic Review			
Citation: Bustamante EE, Williams CF, Davis CL. Physical activity interventions for neurocognitive and			
academic performance in overweight and obese youth: A systematic review. Pediatr Clin North Am.			
2016;63(3):459-480. doi:10.1016/j.pcl.2016.02.004.			
Purpose: To understand the translation (efficacy)	Abstract: This article examines cognitive,		
of physical activity (PA) interventions for	academic, and brain outcomes of physical		
neurologic, cognitive, and academic outcomes in	activity in overweight or obese youth, with		
overweight and obese children, with attention to	attention to minority youth who experience		
minority representation.	health disparities. Physically active academic		
Timeframe: Inception-2015	lessons may have greater immediate cognitive		
Total # of Studies: 12	and academic benefits among overweight and		
Exposure Definition: Various PA interventions such	obese children than normal-weight children.		
as treadmill walking, daily sport participation, and	Quasi-experimental studies testing physical		
aerobic exercise training.	activity programs in overweight and obese		
Measures Steps: No	youth show promise; a few randomized		
Measures Bouts: No	controlled trials including African Americans		
Examines HIIT: No	show efficacy. Thus, making academic lessons		
Outcomes Addressed: Neurologic (functional	physically active may improve inhibition and		
magnetic resonance imaging scans), cognitive	attentiveness, particularly in overweight		
(flanker test, antisaccade performance, Tower of	youngsters. Regular physical activity may be		
London), or academic performance (Woodcock	efficacious for improving neurologic, cognitive,		
Johnson Tests of Achievement).	and achievement outcomes in overweight or		
Examine Cardiorespiratory Fitness as Outcome:	obese youth.		
No			
Populations Analyzed: Youth, Overweight and	Author-Stated Funding Source: None		
Obese			

Citation: Carson V, Hunter S, Kuzik N, et al. Systematic review of physical activity and cognitive development in early childhood. *J Sci Med Sport.* 2016;19(7):573-578.

Doi:10.1016/j.jsams.2015.07.011. **Purpose:** To comprehensively review all observational and experimental studies examining the relationship between physical activity (PA) and cognitive development during early childhood (birth to 5 years).

Timeframe: 1895–July 2014

Total # of Studies: 7 Exposure Definition: PA program

condition or class, which involved at least moderate-intensity PA. The control group or condition was either usual care or a sedentary condition. Active play during recess, quantified as duration of moderate- to vigorous-intensity physical activity (MVPA), objectively assessed with an accelerometer, was the exposure in one observational study; and frequency of PA, objectively assessed by an actometer, was the exposure in the second observational study. Measures Steps: No Measures Bouts: No Examines HIIT: No **Outcomes Addressed:** Cognitive

development outcomes in the executive function and language domains were most commonly assessed. Children directly completed the assessments or a trained research assistant completed the assessments through direct observation. **Examine Cardiorespiratory Fitness as Outcome:** No

Populations Analyzed: Youth 0–5

Abstract: OBJECTIVES: To comprehensively review all observational and experimental studies examining the relationship between physical activity and cognitive development during early childhood (birth to 5 years). **DESIGN: Systematic review. METHODS: Electronic** databases were searched in July, 2014. No study design, date, or language limits were imposed on the search. Included studies had to be published, peer reviewed articles that satisfied the a priori determined population (apparently healthy children aged birth to 5 years), intervention (duration, intensity, frequency, or patterns of physical activity), comparator (various durations, intensity, or patterns of physical activity), and outcome (cognitive development) study criteria. Study quality and risk of bias were assessed in December 2014. RESULTS: A total of seven studies, representing 414 participants from five different countries met the inclusion criteria, including two observational and five experimental studies. Six studies found increased or higher duration/frequency of physical activity had statistically significant (p<0.05) beneficial effects on at least one cognitive development outcome, including 67% of the outcomes assessed in the executive function domain and 60% in the language domain. No study found that increased or higher duration/frequency of physical activity had statistically significant detrimental effects on cognitive development. Six of the seven studies were rated weak quality with a high risk of bias. CONCLUSIONS: This review provides some preliminary evidence that physical activity may have beneficial effects on cognitive development during early childhood. Given the shortage of the information and the weak quality of available evidence, future research is needed to strengthen the evidence base in this area. Author-Stated Funding Source: Norlien Foundation, Alberta Family Wellness Initiative, Alberta Centre for

Child, Family and Community Research

Meta-Analysis			
Citation: Cerrillo-Urbina AJ, García-Hermoso A, Sánchez-López M, Pardo-Guijarro MJ, Santos Gómez			
JL, Martínez-Vizcaíno V. The effects of physical exercise in children with attention deficit hyperactivity			
disorder: a systematic review and meta-analysis of randomized control trials. <i>Child Care Health Dev.</i>			
2015;41(6):779-788. doi:10.1111/cch.12255.			
Purpose: To examine the evidence for the	Abstract: OBJECTIVE: The aim of this systematic review		
effectiveness of physical education	and meta-analysis was to examine the evidence for the		
interventions on symptoms such as	effectiveness of exercise interventions on attention		
inattention, hyperactivity/impulsivity,	deficit hyperactivity disorder (ADHD)-related symptoms		
anxiety, and cognitive functions in children	such as inattention, hyperactivity/impulsivity, anxiety		
and adolescents with attention deficit	and cognitive functions in children and adolescents.		
hyperactivity disorder.	METHOD: Five databases covering the period up to		
Timeframe: Inception–2014	November 2014 (PubMed, Scopus, EMBASE, EBSCO [E-		
Total # of Studies: 8	journal, CINAHL, SportDiscus] and The Cochrane Library)		
Exposure Definition: Aerobic physical	were searched. Methodological quality was assessed		
activity. Intensity was measured with	using the Cochrane tool of bias. Standardized mean		
heart rate monitors and maximal oxygen	differences (SMD) and 95% confidence intervals were		
consumption (VO2 max). The mean	calculated, and the heterogeneity of the studies was		
duration of the interventions was 5 weeks;	estimated using Cochran's Q-statistic. RESULTS: Eight		
the mean duration of sessions was 50	randomized controlled trials (n = 249) satisfied the		
minutes, and the average frequency was 2	inclusion criteria. The studies were grouped according to		
to 3 times/week. Activities in these	the intervention programme: aerobic and yoga exercise.		
interventions included running, motor-	The meta-analysis suggests that aerobic exercise had a		
driven, and multi-sports. One study used a	moderate to large effect on core symptoms such as		
yoga intervention: one 60 minute session	attention (SMD = 0.84), hyperactivity (SMD = 0.56) and		
a week for 20 weeks.	impulsivity (SMD = 0.56) and related symptoms such as		
Measures Steps: No	anxiety (SMD = 0.66), executive function (SMD = 0.58)		
Measures Bouts: No	and social disorders (SMD = 0.59) in children with ADHD.		
Examines HIIT: No	Yoga exercise suggests an improvement in the core		
Outcomes Addressed: Changes in	symptoms of ADHD. CONCLUSIONS: The main		
symptoms and/or problems related to	cumulative evidence indicates that short-term aerobic		
attention deficit hyperactivity disorder:	exercise, based on several aerobic intervention formats,		
attention, hyperactivity, impulsivity,	seems to be effective for mitigating symptoms such as		
anxiety, executive function, and social	attention, hyperactivity, impulsivity, anxiety, executive		
disorders.	function and social disorders in children with ADHD.		
Examine Cardiorespiratory Fitness as			
Outcome: No			
Populations Analyzed: Youth 6–18,	Author-Stated Funding Source: Not Reported		
Attention Deficit Hyperactivity Disorder			

Meta-Analysis			
Citation: Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive			
performance: A meta-analysis. Brain Res. 2012;1453:87-101. doi:10.1016/j.brainres.2012.02.068.			
Purpose: To provide an updated	Abstract: There is a substantial body of literature related		
comprehensive analysis of the extant	to the effects of a single session of exercise on cognitive		
literature on acute exercise and	performance. The premise underlying this research is that		
cognitive performance and to explore	physiological changes in response to exercise have		
the effects of moderators that have	implications for cognitive function. This literature has		
implications for mechanisms of the	been reviewed both narratively and meta-analytically and,		
effects.	although the research findings are mixed, researchers		
Timeframe: Inception-2010	have generally concluded that there is a small positive		
Total # of Studies: 79	effect. The purpose of this meta-analysis was to provide		
Exposure Definition: Acute bouts of	an updated comprehensive analysis of the extant		
exercise, measured by intensity as	literature on acute exercise and cognitive performance		
percentage of heart rate max, maximal	and to explore the effects of moderators that have		
oxygen consumption, watts, or power.	implications for mechanisms of the effects. Searches of		
Very light (<50% heart rate max), light	electronic databases and examinations of reference lists		
(50–63%), moderate (64–76), hard (77–	from relevant studies resulted in 79 studies meeting		
93), very hard (>93%), and maximal	inclusion criteria. Consistent with past findings, analyses		
(100%). Also subgroup analysis by type	indicated that the overall effect was positive and small		
of exercise (aerobic, anaerobic,	(g=0.097 n=1034). Positive and small effects were also		
muscular, combination, or	found in all three acute exercise paradigms: during		
accelerometer). Subgroup analysis by	exercise (g=0.101; 95% confidence interval [CI]; 0.041-		
fitness level (low, moderate, and high).	0.160), immediately following exercise (g=0.108; 95% CI;		
Measures Steps: No	0.069-0.147), and after a delay (g=0.103; 95% CI; 0.035-		
Measures Bouts: No	0.170). Examination of potential moderators indicated		
Examines HIIT: No	that exercise duration, exercise intensity, type of cognitive		
Outcomes Addressed: Change in	performance assessed, and participant fitness were significant moderators. In conclusion, the effects of acute		
cognitive task scores. Cognitive tasks	exercise on cognitive performance are generally small;		
included information processing,	however, larger effects are possible for particular		
reaction time, attention, crystallized	cognitive outcomes and when specific exercise		
intelligence, executive function, and	parameters are used.		
memory.			
Examine Cardiorespiratory Fitness as Outcome: No			
Populations Analyzed: Male, Female, All	Author-Stated Funding Source: Office of Research for the		
	School of Health and Human Science at the University of		
ages	North Carolina at Greensboro		

Meta-Analysis				
Citation: Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-				
analytic study. <i>Psychol Sci.</i> 2003;14(2):125-130.				
Purpose: To examine the extent to which	Abstract: A meta-analytic study was			
enhancements in aerobic fitness result in	conducted to examine the hypothesis that			
improvements in cognition.	aerobic fitness training enhances the			
Timeframe: 1966–2001	cognitive vitality of healthy but sedentary			
Total # of Studies: 18	older adults. Eighteen intervention studies			
Exposure Definition: Interventions that emphasized	published between 1966 and 2001 were			
cardiovascular fitness in isolation (aerobic) and those	entered into the analysis. Several			
that combined cardiovascular fitness training with	theoretically and practically important			
strength training (combination). The duration of the	results were obtained. Most important			
training sessions was as follows: short, 15–30	fitness training was found to have robust but			
minutes; moderate, 31–45 minutes; and long, 46–60	selective benefits for cognition, with the			
minutes. The length of the exercise intervention was	largest fitness-induced benefits occurring for			
as follows: short, 1–3 months; medium, 4–6 months;	executive-control processes. The magnitude			
and long, 6+ months. Cardiovascular improvement	of fitness effects on cognition was also			
shown in the participants, based on either estimated	moderated by a number of programmatic			
or actual maximal oxygen consumption (VO2) peak or	and methodological factors, including the			
max scores (unreported; moderate, 5–11%; and large,	length of the fitness-training intervention,			
12–25%).	the type of the intervention, the duration of			
Measures Steps: No	training sessions, and the gender of the study			
Measures Bouts: No	participants. The results are discussed in			
Examines HIIT: No	terms of recent neuroscientific and			
Outcomes Addressed: Cognitive processes identified	psychological data that indicate cognitive			

by the four theoretical positions (speed, visuospatial,

Examine Cardiorespiratory Fitness as Outcome: No

controlled processing, and executive control).

Populations Analyzed: Adults 55-80

and neural plasticity is maintained

Author-Stated Funding Source: National Institute on Aging, Institute for the Study of

throughout the life span.

Aging

Citation: Den Heijer AE, Groen Y, Tucha L, et al. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review. *J Neural Transm* (Vienna). 2017;124(suppl 1):3-26. doi:10.1007/s00702-016-1593-7.

Trunsin (vienna). 2017,124(Suppi 1).5-20.	01.10.1007/300702-010-1333-7.
Purpose: To systematically review the	Abstract: As attention-deficit/hyperactivity disorder
effects of cardiovascular and non-	(ADHD) is one of the most frequently diagnosed
cardiovascular exercise types on	developmental disorders in childhood, effective yet safe
cognitive, behavioral/socio-emotional,	treatment options are highly important. Recent research
and physical/neuro physiological	introduced physical exercise as a potential treatment
outcome measures in children with	option, particularly for children with ADHD. The aim of
attention deficit hyperactivity disorder,	this review was to systematically analyze potential acute
thereby also addressing the duration of	and chronic effects of cardio and non-cardio exercise on a
these effects (acute or chronic).	broad range of functions in children with ADHD and to
Timeframe: Inception-2016	explore this in adults as well. Literature on physical
Total # of Studies: 29	exercise in patients with ADHD was systematically
Exposure Definition: Exercise type	reviewed based on categorizations for exercise type
(cardiovascular vs. non-cardiovascular)	(cardio versus non-cardio), effect type (acute versus
and duration of exercise (acute [<24	chronic), and outcome measure (cognitive,
hours] and chronic [1–10 weeks]) were	behavioral/socio-emotional, and
looked at. Examples of cardiovascular	physical/(neuro)physiological). Furthermore, the
exercise exposures include treadmill	methodological quality of the reviewed papers was
running, cycle ergometer/cycling,	addressed. Cardio exercise seems acutely beneficial
swimming and jumping. Examples of	regarding various executive functions (e.g., impulsivity),
non-cardiovascular exercise include	response time and several physical measures. Beneficial
yoga, walking, and playground activity.	chronic effects of cardio exercise were found on various
Measures Steps: No	functions as well, including executive functions, attention
Measures Bouts: No	and behavior. The acute and chronic effects of non-cardio
Examines HIIT: No	exercise remain more questionable but seem
Outcomes Addressed: Cognitive	predominantly positive too. Research provides evidence
outcome measures (intelligence scores,	that physical exercise represents a promising alternative
attention, planning, and memory),	or additional treatment option for patients with ADHD.
behavioral and socio-emotional	Acute and chronic beneficial effects of especially cardio
outcomes (parent/teacher	exercise were reported with regard to several cognitive,
questionnaires) and physical and	behavioral, and socio-emotional functions. Although
neurophysiological outcomes	physical exercise may therefore represent an effective
(physical/physiological effects).	treatment option that could be combined with other
Examine Cardiorespiratory Fitness as	treatment approaches of ADHD, more well-controlled
Outcome: No	studies on this topic, in both children and adults, are
Denulations Analysis 1. All success	needed.
Populations Analyzed: All ages,	Author-Stated Funding Source: Not Reported
Attention Deficit Hyperactivity Disorder	

Meta-Analysis				
Citation: Dinoff A, Herrmann N, Swardfager W, et al. The effect of exercise training on resting				
concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLoS One.				
2016;11(9):e0163037. doi:https://doi.org/10.1371/journal.pone.0163037.				
Purpose: To quantify the magnitude	Abstract: BACKGROUND: The mechanisms through which			
and consistency of the effect of	physical activity supports healthy brain function remain to be			
exercise training on resting	elucidated. One hypothesis suggests that increased brain-			
concentrations of brain-derived	derived neurotrophic factor (BDNF) mediates some cognitive			
neurotrophic factor (BDNF) in	and mood benefits. This meta-analysis sought to determine			
peripheral blood.	the effect of exercise training on resting concentrations of			
Timeframe: Inception-2016	BDNF in peripheral blood. METHODS: MEDLINE, Embase,			
Total # of Studies: 29	PsycINFO, SPORTDiscus, Rehabilitation & Sports Medicine			
Exposure Definition: Studies were	Source, and CINAHL databases were searched for original,			
included if exercise interventions	peer-reviewed reports of peripheral blood BDNF			
were implemented for ≥2 weeks, at	concentrations before and after exercise interventions >/= 2			
an intensity of ≥50% of peak oxygen	weeks. Risk of bias was assessed using standardized criteria.			
uptake (VO2 peak), or if exercise	Standardized mean differences (SMDs) were generated from			
intensity was not reported but	random effects models. Risk of publication bias was assessed			
exercise was described as running,	using funnel plots and Egger's test. Potential sources of			
cycling, or resistance training.	heterogeneity were explored in subgroup analyses. RESULTS:			
Included studies measured BDNF	In 29 studies that met inclusion criteria, resting			
before and after the exercise	concentrations of peripheral blood BDNF were higher after			
intervention.	intervention (SMD = 0.39, 95% CI: 0.17-0.60, p < 0.001).			
Measures Steps: No	Subgroup analyses suggested a significant effect in aerobic			
Measures Bouts: No	(SMD = 0.66, 95% CI: 0.33-0.99, p < 0.001) but not resistance			
Examines HIIT: No	training (SMD = 0.07, 95% CI: -0.15-0.30, p = 0.52)			
Outcomes Addressed: Measured	interventions. No significant difference in effect was			
serum, plasma, or whole blood brain-	observed between males and females, nor in serum vs			
derived neurotrophic factor	plasma. CONCLUSION: Aerobic but not resistance training			
concentration.	interventions increased resting BDNF concentrations in			
Examine Cardiorespiratory Fitness as	peripheral blood.			
Outcome: No				
Populations Analyzed: Male, Female,	Author-Stated Funding Source: Canadian Institutes of Health			
Adults ≥18	Research and Ontario Mental Health Foundation			

Citation: Donnelly JE, Hillman CH, Castelli D, et al. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. *Med Sci Sports Exerc.* 2016;48(6):1197-1222. doi:10.1249/MSS.00000000000000001.

Purpose: To answer Abstract: BACKGROUND: The relationship among physical activity (PA), the following fitness, cognitive function, and academic achievement in children is receiving questions: Among considerable attention. The utility of PA to improve cognition and academic children ages 5–13, achievement is promising but uncertain; thus, this position stand will provide do physical activity clarity from the available science. OBJECTIVE: The purpose of this study was (PA) and physical to answer the following questions: 1) among children age 5-13 yr, do PA and fitness influence physical fitness influence cognition, learning, brain structure, and brain cognition, learning, function? 2) Among children age 5-13 yr, do PA, physical education (PE), and brain structure, and sports programs influence standardized achievement test performance and brain function? concentration/attention? STUDY ELIGIBILITY CRITERIA: This study used primary source articles published in English in peer-reviewed journals. Among children ages 5-13, do PA, physical Articles that presented data on, PA, fitness, or PE/sport participation and education (PE), and cognition, learning, brain function/structure, academic achievement, or sports programs concentration/attention were included. DATA SOURCES: Two separate influence searches were performed to identify studies that focused on 1) cognition, standardized learning, brain structure, and brain function and 2) standardized achievement achievement test test performance and concentration/attention. PubMed, ERIC, PsychInfo, performance and SportDiscus, Scopus, Web of Science, Academic Search Premier, and Embase concentration/attenti were searched (January 1990-September 2014) for studies that met inclusion on? criteria. Sixty-four studies met inclusion criteria for the first search (cognition/learning/brain), and 73 studies met inclusion criteria for the **Timeframe:** January 1990-May 2015 second search (academic achievement/concentration). STUDY APPRAISAL AND SYNTHESIS METHODS: Articles were grouped by study design as cross-Total # of Studies: sectional, longitudinal, acute, or intervention trials. Considerable 137 heterogeneity existed for several important study parameters; therefore, **Exposure Definition:** results were synthesized and presented by study design. RESULTS: A majority PA or fitness of the research supports the view that physical fitness, single bouts of PA, assessment methods and PA interventions benefit children's cognitive functioning. Limited (e.g., questionnaires, evidence was available concerning the effects of PA on learning, with only time spent in PE, and one cross-sectional study meeting the inclusion criteria. Evidence indicates FitnessGram). that PA has a relationship to areas of the brain that support complex Measures Steps: No cognitive processes during laboratory tasks. Although favorable results have Measures Bouts: No been obtained from cross-sectional and longitudinal studies related to Examines HIIT: No academic achievement, the results obtained from controlled experiments Outcomes evaluating the benefits of PA on academic performance are mixed, and Addressed: Cognitive additional, well-designed studies are needed. LIMITATIONS: Limitations in assessment measures evidence meeting inclusion criteria for this review include lack of randomized (e.g., reaction time, controlled trials, limited studies that are adequately powered, lack of flanker task, and information on participant characteristics, failure to blind for outcome **Cognitive Assessment** measures, proximity of PA to measurement outcomes, and lack of System), and accountability for known confounders. Therefore, many studies were ranked academic as high risk for bias because of multiple design limitations. CONCLUSIONS: achievement The present systematic review found evidence to suggest that there are assessment methods positive associations among PA, fitness, cognition, and academic

(e.g., state- administered tests and individualized achievement tests).achievement. However, the findings are inconsistent, and the effects of numerous elements of PA on cognition remain to be explored, such as type, amount, frequency, and timing. Many questions remain regarding how to best incorporate PA within schools, such as activity breaks versus active lessons in relation to improved academic achievement. Regardless, the
and individualized achievement tests).amount, frequency, and timing. Many questions remain regarding how to best incorporate PA within schools, such as activity breaks versus active
achievement tests). best incorporate PA within schools, such as activity breaks versus active
Examine lessons in relation to improved academic achievement. Regardless, the
Cardiorespiratory literature suggests no indication that increases in PA negatively affect
Fitness as Outcome: cognition or academic achievement and PA is important for growth and
No development and general health. On the basis of the evidence available, the
authors concluded that PA has a positive influence on cognition as well as
brain structure and function; however, more research is necessary to
determine mechanisms and long-term effect as well as strategies to translate
laboratory findings to the school environment. Therefore, the evidence
category rating is B. The literature suggests that PA and PE have a neutral
effect on academic achievement. Thus, because of the limitations in the
literature and the current information available, the evidence category rating
for academic achievement is C.
Populations Author-Stated Funding Source: Funding for Szabo-Reed was provided by
Analyzed: Youth 5– F32DK103493.
13

Citation: Esteban-Cornejo I, Tejero-Gonzalez CM, Sallis JF, Veiga OL. Physical activity and cognition in adolescents: a systematic review. *J Sci Med Sport.* 2015;18(5):534-539. doi:10.1016/j.jsams.2014.07.007.

doi:10.1016/j.jsams.2014.07.007.	
Purpose: To systematically review	Abstract: OBJECTIVES: The purpose of this report is to perform a
the evidence of association	systematic review of the evidence on the associations between
between physical activity (PA) and	physical activity and cognition by differentiating between
cognition by differentiating	academic and cognitive performance measures. Second-
between academic and cognitive	generation questions regarding potential mediators or
performance measures.	moderators (i.e., sex, age and psychological variables) of this
Timeframe: 2000–2013	relationship were also examined. DESIGN: Systematic review.
Total # of Studies: 20	METHODS: Studies were identified from searches in PubMed,
Exposure Definition: Weekly self	Sportdiscus and ERIC databases from 2000 through 2013. The
reported PA (one study used	search process was carried out by two independent researchers.
objective measurement). Five	RESULTS: A total of 20 articles met the inclusion criteria, 2 of
studies looked just at athletic	them analyzed both cognitive and academic performance in
participation or physical	relation to physical activity. Four articles (18%) found no
education.	association between physical activity and academic
Measures Steps: No	performance, 11 (50%) found positive association and one
Measures Bouts: No	showed negative association (5%). Five articles (23%) found
Examines HIIT: No	positive association between physical activity and cognitive
Outcomes Addressed: Measures	performance and one showed negative association (5%). The
of cognition including Science	findings of these studies show that cognitive performance is
Research Associates test of	associated with vigorous physical activity and that academic
educational ability, standardized	performance is related to general physical activity, but mainly in
test scores, Terra Nova test, and	girls. Results of the review also indicate that type of activity and
other cognitive tests. Academic	some psychological factors (i.e., self-esteem, depression) could
performance measurements were	mediate the association between physical activity and academic
assessed using self-reported or	performance. CONCLUSIONS: Results of the review support that
school-reported grades.	physical activity is associated with cognition, but more research
Examine Cardiorespiratory Fitness	is needed to clarify the role of sex, intensity and type of physical
as Outcome: No	activity and some psychological variables of this association.
Populations Analyzed: Youth 13–	Author-Stated Funding Source: UP&DOWN study
18	

Meta-Analysis

Citation: Etnier JL, Nowell PM, Landers DM, Sibley BA. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. *Brain Res Rev.* 2006;52(1):119-130.

Purpose: To provide a statistically powerful test of the viability of the cardiovascular fitness hypothesis by examining the dose-response relationship between aerobic fitness and cognition.Abstract: Many studies have been conducted to test the potentially beneficial effects of physical activity on cognition.Timeframe: 1927-October 2005 Total # of Studies: 37 Exposure Definition: Fitness maximal measure of oxygen consumption (VO2), a submaximal measure of VO2, a submaximal measure of VO2, a submaximal measure of VO2, or a composite measure of VO2.Abstract: Many studies have been conducted to test the potentially beneficial effects of physical activity on cognition. The results of meta-analytic reviews of this literature suggest that there is a positive association between participation in physical activity and cognitive performance. The design of past research demonstrates the tacit assumption that changes in aerobic fitness contribute to the changes in cognitive performance. Therefore, the purpose of this meta-analysis was to use meta-regression techniques to statistically test the relationship between aerobic fitness and cognitive performance. Results indicated that there was not a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this review, we also encourage intelligence, crystallized intelligence, speneral memory and learning, visual perception, auditory perception, retrieval ability, speedinees, and processing speed.AuthorsStated Eunding Source: Not ReportedExamine Cardiorespiratory Fitness as Outcome: No<	Detween derobic fittiess and cognitiv	e performance. Bruin Res Rev. 2006;52(1):119-130.
cardiovascular fitness hypothesis by examining the dose-response relationship between aerobic fitness and cognition.The results of meta-analytic reviews of this literature suggest that there is a positive association between participation in physical activity and cognitive performance. The design of past research demonstrates the tacit assumption that changes in aerobic fitness contribute to the changes in cognitive performance. Therefore, the purpose of this meta-analysis wasExposure Definition: Fitness measure of vO2, a submaximal measure of VO2, a submaximal measure of VO2, a submaximal measure of VO2, or a composite measure of VO2.The results indicated that there was not a significant linear or curvilinear relationship between aerobic fitness and cognitive performance. Results indicated that there was not a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, we also encourage future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of t	• • •	,
by examining the dose-response relationship between aerobic fitness and cognition.that there is a positive association between participation in physical activity and cognitive performance. The design of past research demonstrates the tacit assumption that changes in aerobic fitness contribute to the changes in cognitive performance. Therefore, the purpose of this meta-analysis was to use meta-regression techniques to statistically test the relationship between aerobic fitness and cognitive performance. Results indicated that there was not a significant linear or curvilinear relationship between fitness effect sizes (ESs) and cognitive ESs for studies using cross-sectional designs or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.		
relationship between aerobic fitness and cognition.physical activity and cognitive performance. The design of past research demonstrates the tacit assumption that changes in aerobic fitness contribute to the changes in cognitive performance. The provided to the changes in cognitive performance.Timeframe: 1927-October 2005 maximal measure of VO2, a submaximal measure of VO2, a submaximal measure of VO2, a submaximal measure of VO2.provided to the changes in cognitive performance. The provided to the cross-sectional and pre-post comparisons. The effects for the cross-sectional and pre-post comparisons. The effects for the cross-sectional and pre-post comparisons. The effects for the cross-sectional and pre-post compa	cardiovascular fitness hypothesis	The results of meta-analytic reviews of this literature suggest
fitness and cognition.research demonstrates the tacit assumption that changes in aerobic fitness contribute to the changes in cognitive performance. Therefore, the purpose of this meta-analysis was to use meta-regression techniques to statistically test the relationship between aerobic fitness and cognitive performance. Results indicated that there was not a significant linear or curvilinear relationship between fitness effect sizes (ESs) and cognitive ESs for studies using cross-sectional designs or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance. Results indicated that there was not a significant linear or curvilinear relationship between fitness effect sizes (ESs) and cognitive ESs for studies using cross-sectional designs or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance. performance.	by examining the dose-response	
Timeframe: 1927–October 2005aerobic fitness contribute to the changes in cognitiveTotal # of Studies: 37performance. Therefore, the purpose of this meta-analysis wasExposure Definition: Fitnessto use meta-regression techniques to statistically test themeasurement was coded as arelationship between aerobic fitness and cognitivemaximal measure of oxygenperformance. Results indicated that there was not a significantconsumption (VO2), a submaximallinear or curvilinear relationship between fitness effect sizesmaximal VO2, a submaximalcospitive ESs for studies using cross-sectional designsmeasure of VO2, or a compositeor posttest comparisons. However, there was a significantmeasures of VO2.negative relationship between aerobic fitness and cognitivemeasure of VO2.performance for pre-post comparisons. The effects for thecross-sectional and pre-post comparisons. Were moderated bythe age group of the participants; however, the nature of thiseffect was not consistent for the two databases. Based on thefindings of this meta-analytic review, it is concluded that theempirical literature does not support the cardiovascular fitnesshypothesis. To confirm the findings of this review, futureresearch should specifically test the dose-response relationshipbetween aerobic fitness and cognitive performance. However,based upon the findings of this review, we also encouragefuture research to focus on other physiological andpsychological variables that may serve to mediate therelationship between physical activity and cognitiveperformance. No </td <td>relationship between aerobic</td> <td>physical activity and cognitive performance. The design of past</td>	relationship between aerobic	physical activity and cognitive performance. The design of past
Total # of Studies: 37performance. Therefore, the purpose of this meta-analysis wasExposure Definition: Fitnessperformance. Therefore, the purpose of this meta-analysis wasmeasurement was coded as ato use meta-regression techniques to statistically test themeasurement was coded as arelationship between aerobic fitness and cognitivemaximal measure of VO2), a submaximalperformance. Results indicated that there was not a significantmeasure of VO2, a submaximalinear or curvilinear relationship between fitness effect sizesmeasure of VO2, or a compositeor posttest comparisons. However, there was a significantmeasure of VO2.negative relationship between aerobic fitness and cognitivemeasure of VO2.performance for pre-post comparisons. The effects for themeasures Steps: Nothe age group of the participants; however, the nature of thisMeasures Bulti: Noeffect was not consistent for the two databases. Based on thefindings of this meta-analytic review, it is concluded that theetsts: the categories used werehypothesis. To confirm the findings of this review, futurefluid intelligence, general memory andbetween aerobic fitness and cognitive performance. However,based upon the findings of this review, we also encouragefuture research to focus on other physiological andpsped.Examine Cardiorespiratory Fitnessas Outcome: No	fitness and cognition.	research demonstrates the tacit assumption that changes in
Exposure Definition: Fitness measurement was coded as a maximal measure of oxygen consumption (VO2), a submaximal measure of VO2 used to predict maximal VO2, a submaximal measure of VO2, or a composite measure including a submaximal measure of VO2.to use meta-regression techniques to statistically test the relationship between aerobic fitness and cognitive performance. Results indicated that there was not a significant linear or curvilinear relationship between fitness effect sizes (ESs) and cognitive ESs for studies using cross-sectional designs or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	Timeframe: 1927–October 2005	aerobic fitness contribute to the changes in cognitive
measurement was coded as a maximal measure of oxygen consumption (VO2), a submaximal measure of VO2 used to predict maximal VO2, a submaximal measure of VO2, a submaximal measure of VO2, a submaximal measure of VO2, or a composite measure including a submaximal measure of VO2.relationship between aerobic fitness and cognitive performance. Results indicated that there was not a significant linear or curvilinear relationship between fitness effect sizes (ESs) and cognitive ESs for studies using cross-sectional designs or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	Total # of Studies: 37	
maximal measure of oxygen consumption (VO2), a submaximal measure of VO2 used to predict maximal VO2, a submaximal measure of VO2, or a composite measure including a submaximal measure of VO2.performance. Results indicated that there was not a significant linear or curvilinear relationship between fitness effect sizes or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	Exposure Definition: Fitness	
Consumption (VO2), a submaximal measure of VO2 used to predict maximal VO2, a submaximallinear or curvilinear relationship between fitness effect sizes (ESs) and cognitive ESs for studies using cross-sectional designs or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	measurement was coded as a	
measure of VO2 used to predict maximal VO2, a submaximal measure of VO2, or a composite measure including a submaximal measure of VO2.(ESs) and cognitive ESs for studies using cross-sectional designs or posttest comparisons. However, there was a significant negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	maximal measure of oxygen	
 maximal VO2, a submaximal measure of VO2, or a composite measure including a submaximal measure of VO2. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Cognitive the categories used were fluid intelligence, crystallized intelligence, general memory and learning, visual perception, auditory perception, retrieval ability, speediness, and processing speed. Examine Cardiorespiratory Fitness as Outcome: No 	consumption (VO2), a submaximal	· ·
measure of VO2, or a composite measure including a submaximal measure of VO2.negative relationship between aerobic fitness and cognitive performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	measure of VO2 used to predict	
measure including a submaximal measure of VO2.performance for pre-post comparisons. The effects for the cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Noperformance.	maximal VO2, a submaximal	
measure of VO2.cross-sectional and pre-post comparisons were moderated by the age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	measure of VO2, or a composite	
Measures Steps: Nothe age group of the participants; however, the nature of this effect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Noenter fitness as Outcome: No	measure including a submaximal	
Measures Bouts: Noeffect was not consistent for the two databases. Based on the findings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	measure of VO2.	
Examines HIIT: Nofindings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nofindings of this meta-analytic review, it is concluded that the empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	Measures Steps: No	
Outcomes Addressed: Cognitive tests: the categories used were fluid intelligence, crystallized intelligence, general memory and learning, visual perception, auditory perception, retrieval ability, speediness, and processing speed.empirical literature does not support the cardiovascular fitness hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nopage difference performance.		
tests: the categories used were fluid intelligence, crystallized intelligence, general memory and learning, visual perception, auditory perception, retrieval ability, speediness, and processing speed.hypothesis. To confirm the findings of this review, future research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nopsychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	Examines HIIT: No	
fluid intelligence, crystallized intelligence, general memory and learning, visual perception, auditory perception, retrieval ability, speediness, and processing speed.research should specifically test the dose-response relationship between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nopsychological variables that may serve to mediate the relationship between physical activity and cognitive	Outcomes Addressed: Cognitive	
intelligence, general memory and learning, visual perception, auditory perception, retrieval ability, speediness, and processing speed.between aerobic fitness and cognitive performance. However, based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nopsychological variables that may serve to mediate the performance.	-	
learning, visual perception, auditory perception, retrieval ability, speediness, and processing speed.based upon the findings of this review, we also encourage future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nopsychological variables that may serve to mediate the relationship between physical activity and cognitive	fluid intelligence, crystallized	
auditory perception, retrieval ability, speediness, and processing speed.future research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nofuture research to focus on other physiological and psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.		
ability, speediness, and processing speed.psychological variables that may serve to mediate the relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Nopsychological variables that may serve to mediate the relationship between physical activity and cognitive performance.	learning, visual perception,	
speed.relationship between physical activity and cognitive performance.Examine Cardiorespiratory Fitness as Outcome: Norelationship between physical activity and cognitive performance.		
Examine Cardiorespiratory Fitnessperformance.as Outcome: NoPerformance.	ability, speediness, and processing	
as Outcome: No	-	
		performance.
Populations Analyzed: All ages Author-Stated Funding Source: Not Reported		
Autor Stated Funding Source. Not reported	Populations Analyzed: All ages	Author-Stated Funding Source: Not Reported

Citation: Falck RS, Davis JC, Liu-Ambrose T. What is the association between sedentary behaviour and cognitive function? A systematic review. *Br J Sports Med.* 2016;51(10):800-811. doi:10.1136/bjsports-2015-095551.

Purpose: To systematically review	Abstract: AIM: The increasing rate of all-cause dementia
the epidemiological evidence	worldwide and the lack of effective pharmaceutical
regarding how sedentary behavior is	treatments emphasise the value of lifestyle approaches as
associated with cognitive function	prevention strategies. Emerging evidence suggests sedentary
throughout the adult lifespan.	behaviour is associated with impaired cognitive function. A
Timeframe: January 1990–February	better understanding of this association would significantly
2016	add to our knowledge of how to best promote healthy
Total # of Studies: 7	cognitive ageing. Thus, we conducted a systematic review
Exposure Definition: Sedentary	ascertaining the contribution of sedentary behaviour towards
behaviors included behaviors as	associated changes in cognitive function over the adult
measured by self-reported TV	lifespan. STUDY DESIGN: Systematic review of peer-reviewed
viewing, self-administered French	literature examining the association of sedentary behaviour
Modifiable Activity Questionnaire,	with cognition. DATA SOURCES: We searched PubMed,
Community Health Activities Model	PsycINFO, EBSCO and Web of Science, and reference lists of
Program for Seniors questionnaire,	relevant reviews on sedentary behaviour. Two independent
and Sedentary Behaviour	reviewers extracted (1) study characteristics and (2)
Questionnaire, and self-reported	information regarding measurement of sedentary behaviour
leisure time physical activity. One	and cognitive function. We also assessed study quality using
study used accelerometers to	the Strengthening the Reporting of Observational Studies in
measure sedentary behavior.	Epidemiology (STROBE) checklist. ELIGIBILITY CRITERIA: We
Measures Steps: No	limited search results to adults >/=40 years, observational
Measures Bouts: No	studies published in English since 1990 and studies
Examines HIIT: No	investigating associations between sedentary behaviour and
Outcomes Addressed: Cognitive	cognitive function. RESULTS: 8 studies examined the
function: five studies measured	association of sedentary behaviour with cognitive function. 6
memory, five measured executive	studies reported significant negative associations between
function, four measured processing	sedentary behaviour and cognitive function. 8 different
speed, two measured incidence of	measures of sedentary behaviour and 13 different measures
cognitive impairment or all-cause	of cognitive function were used across all eight studies.
dementia, and one measured	SUMMARY: Sedentary behaviour is associated with lower
perceptual organization and	cognitive performance, although the attributable risk of
planning.	sedentary time to all-cause dementia incidence is unclear.
Examine Cardiorespiratory Fitness	Our systematic review provides evidence that limiting
as Outcome: No	sedentary time and concomitantly engaging in regular
	moderate-to-vigorous physical activity may best promote
	healthy cognitive ageing.
Populations Analyzed: Adults ≥40	Author-Stated Funding Source: Jack Brown and Family
	Alzheimer Research Foundation Society

Meta-Analysis	
	t al Aerobic exercise improves cognitive functioning in
Citation: Firth J, Stubbs B, Rosenbaum S, et al. Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. <i>Schizophr Bull.</i> 2017;43(3):546-	
556. doi:10.1093/schbul/sbw115. 2	
Purpose: To assess the effect of exercise	Abstract. Cognitive deficits are pervasive among people
•	Abstract: Cognitive deficits are pervasive among people
on global cognition in people with	with schizophrenia and treatment options are limited.
schizophrenia, along with examining	There has been an increased interest in the
which domains of cognitive functioning	neurocognitive benefits of exercise, but a comprehensive
are most sensitive to exercise	evaluation of studies to date is lacking. We therefore
interventions.	conducted a meta-analysis of all controlled trials
Timeframe: Inception-2016	investigating the cognitive outcomes of exercise
Total # of Studies: 10	interventions in schizophrenia. Studies were identified
Exposure Definition: Structured and	from a systematic search across major electronic
repetitive physical activity (PA) that has	databases from inception to April 2016. Meta-analyses
an objective of improving or maintaining	were used to calculate pooled effect sizes (Hedges g) and
physical fitness. Examples of exercise	95% Cls. We identified 10 eligible trials with cognitive
protocols include 20 minutes of an	outcome data for 385 patients with schizophrenia.
interactive PA video game	Exercise significantly improved global cognition (g = 0.33,
"Move4Health" and 60 minutes of mixed	95% Cl = 0.13-0.53, P = .001) with no statistical
aerobic exercise at 60%–75% peak	heterogeneity (I 2 = 0%). The effect size in the 7 studies
oxygen uptake. Sessions contain a	which were randomized controlled trials was g = 0.43 (P <
mixture of treadmill running, elliptical	.001). Meta-regression analyses indicated that greater
training, and interactive video games.	amounts of exercise are associated with larger
Measures Steps: No	improvements in global cognition (beta = .005, P = .065).
Measures Bouts: No	Interventions which were supervised by physical activity
Examines HIIT: No	professionals were also more effective (g = 0.47, P < .001).
Outcomes Addressed: Global cognition	Exercise significantly improved the cognitive domains of
(change in cognitive functioning), speed	working memory (g = 0.39, P = .024, N = 7, n = 282), social
of processing, attention/vigilance,	cognition (g = 0.71, P = .002, N = 3, n = 81), and
working memory, verbal learning and	attention/vigilance (g = 0.66, P = .005, N = 3, n = 104).
memory, visual learning and memory,	Effects on processing speed, verbal memory, visual
reasoning and problem solving, and	memory and reasoning and problem solving were not
social cognition were measured before	significant. This meta-analysis provides evidence that
and after the aerobic exercise	exercise can improve cognitive functioning among people
intervention program.	with schizophrenia, particularly from interventions using
Examine Cardiorespiratory Fitness as	higher dosages of exercise. Given the challenges in
Outcome: No	improving cognition, and the wider health benefits of
	exercise, a greater focus on providing supervised exercise
	to people with schizophrenia is needed.
Populations Analyzed: Adults 22.7–55.0,	Author-Stated Funding Source: Individual author funding
Schizophrenia	sources reported.

Meta-Analysis

Citation: Groot C, Hooghiemstra AM, Raijmakers PG, et al. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. *Ageing Res Rev.* 2016;25:13-23. doi:10.1016/j.arr.2015.11.005.

2010,23.13-23. d01.10.1010/j.aii.2013.11.003.		
Purpose: To investigate the effect	Abstract: Non-pharmacological therapies, such as physical	
of physical activity (PA) on	activity interventions, are an appealing alternative or add-on to	
cognitive function in patients with	current pharmacological treatment of cognitive symptoms in	
dementia.	patients with dementia. In this meta-analysis, we investigated	
Timeframe: January 1960–May	the effect of physical activity interventions on cognitive function	
2015	in dementia patients, by synthesizing data from 802 patients	
Total # of Studies: 18	included in 18 randomized control trials that applied a physical	
Exposure Definition: PA was	activity intervention with cognitive function as an outcome	
categorized into three categories:	measure. Post-intervention standardized mean difference (SMD)	
aerobic-only, non-aerobic, and	scores were computed for each study, and combined into pooled	
combined. A cut-off at 150	effect sizes using random effects meta-analysis. The primary	
minutes of PA per week was used	analysis yielded a positive overall effect of physical activity	
to distinguish between high- and	interventions on cognitive function (SMD[95% confidence	
low-frequency interventions.	interval]=0.42[0.23;0.62], p<.01). Secondary analyses revealed	
Measures Steps: No	that physical activity interventions were equally beneficial in	
Measures Bouts: No	patients with Alzheimer's disease (AD, SMD=0.38[0.09;0.66],	
Examines HIIT: No	p<.01) and in patients with AD or a non-AD dementia diagnosis	
Outcomes Addressed: Changes in	(SMD=0.47[0.14;0.80], p<.01). Combined (i.e. aerobic and non-	
cognitive test scores. Cognitive	aerobic) exercise interventions (SMD=0.59[0.32;0.86], p<.01) and	
tests, such as the mini mental	aerobic-only exercise interventions (SMD=0.41[0.05;0.76], p<.05)	
state examination, clock drawing	had a positive effect on cognition, while this association was	
test, functional assessment of	absent for non-aerobic exercise interventions (SMD=-0.10[-	
communication skills mental	0.38;0.19], p=.51). Finally, we found that interventions offered at	
subscale, rapid evaluation of	both high frequency (SMD=0.33[0.03;0.63], p<.05) and at low	
cognitive function, Hopkins verbal	frequency (SMD=0.64[0.39;0.89], p<.01) had a positive effect on	
learning test, and the Cambridge	cognitive function. This meta-analysis suggests that physical	
neuropsychological test	activity interventions positively influence cognitive function in	
automated battery.	patients with dementia. This beneficial effect was independent of	
Examine Cardiorespiratory	the clinical diagnosis and the frequency of the intervention, and	
Fitness as Outcome: No	was driven by interventions that included aerobic exercise.	
Populations Analyzed: Older	Author-Stated Funding Source: Individual author funding (Marie	
adults, Cognitive Disablity,	Curie FP7 International Out-going Fellowship) and Alzheimer	
Dementia	Nederland and Stichting VUMC	

Citation: Halloway S, Wilbur J, Schoeny ME, Arfanakis K. Effects of endurance-focused physical activity
interventions on brain health: A systematic review. Biol Res Nurs. 2016. pii:1099800416660758.

Purpose: To identify the effect of endurance-	Abstract: Physical activity intervention studies that
focused physical activity (PA) interventions on	focus on improving cognitive function in older adults
the brain as measured by magnetic resonance	have increasingly used magnetic resonance imaging
imaging (MRI) in community-dwelling middle	(MRI) measures in addition to neurocognitive
aged or older adults without cognitive	measures to assess effects on the brain. The purpose
impairment.	of this systematic review was to identify the effects
Timeframe: Inception–2015	of endurance-focused physical activity randomized
Total # of Studies: 6	controlled trial (RCT) interventions on the brain as
Exposure Definition: Laboratory-based	measured by MRI in community-dwelling middle-
treadmill or supervised bike exercise sessions;	aged or older adults without cognitive impairment.
one included community-based PA.	Five electronic databases were searched. The final
Interventions consisted of PA training during	sample included six studies. None of the studies
which participants engaged in aerobic activity	reported racial or ethnic characteristics of the
for 40–60-minute sessions 2 or 3 times per	participants. All studies included neurocognitive
week. Intervention duration ranged from 12	measures in addition to MRI. Five of the six
weeks to 1 year. Researchers most commonly	interventions included laboratory-based treadmill or
used cardiorespiratory fitness to determine	supervised bike exercise sessions, while one included
intensity range for each participant during the	community-based physical activity. Physical activity
PA intervention (perceived exertion and heart	measures were limited to assessment of
rate were also used in some studies).	cardiorespiratory fitness and, in one study,
Measures Steps: Yes	pedometer. Due to the lack of adequate data
Measures Bouts: No	reported, effect sizes were calculated for only one
Examines HIIT: No	study for MRI measures and two studies for
Outcomes Addressed: Brain volume, cerebral	neurocognitive measures. Effect sizes ranged from d
blood flow, cortical plasticity, spatial learning	= .2 to .3 for MRI measures and .2 to .32 for
capacity, and brain activation were measured	neurocognitive measures. Findings of the individual
using magnetic resonance imaging. Neuro-	studies suggest that MRI measures may be more
cognition assessed by executive function,	sensitive to the effects of physical activity than
spatial cognition or spatial memory, verbal	neurocognitive measures. Future studies are needed
memory, and perceptual speed.	that include diverse, community-based participants,
Examine Cardiorespiratory Fitness as	direct measures of physical activity, and complete
Outcome: No	reporting of MRI and neurocognitive findings.
Populations Analyzed: Middle-aged and older	Author-Stated Funding Source: National Institute of
adults	Nursing Research, National Institutes of Health;
	Jonas Nurse Leader Scholar; Jonas Center for Nursing
	and Veterans Healthcare; Midwest Nursing Research
	Society

Systematic Review
Citation: Janssen M, Toussaint HM, van Mechelen W, Verhagen EA. Effects of acute bouts of physical
activity on children's attention: a systematic review of the literature. <i>Springerplus.</i> 2014;3:410.
doi:10.1186/2193-1801-3-410.

Purpose: To describe the effects of acute bouts of physical activity (PA) on attention levels of children.Abstract: The aim of this review was to describe the effects of acute bouts of physical activity on attention levels of children. A systematic review was performed of English studies from searches in PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies of children aged 4-18 years old were included, detailing acute effects of physical activity bouts with the primary outcome at the playground, or as an energizer during class. The PA bouts could be performed with or without equipment or apparatus. Examples include PE class, treadmill, and cycle ergometer.Abstract: The aim of this review was to describe the effects of acute bouts of physical activity on attention. One reviewer extracted data on the study characteristics. Two reviewers conducted the methodological quality assessment independently using a criteria checklist, which was based on the Downs and Black checklist for non- randomised studies. Overall the evidence is thin and inconclusive. The methodological differences in study sample (size and age), study design and measurement of attention was more comparable; either a computerized visual attention task or (modified) flanker tasks were used.Author-Stated Funding Source: Not ReportedPopulations Analyzed: Youth 4–18Author-Stated Funding Source: Not Reported	001.10.1160/2195-1601-5-410.	
children.attention levels of children. A systematic review was performed of English studies from searches in PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies of children aged 4-18 years old were included, detailing acute effects of physical activity bouts on the bouts could be performed with or without equipment or apparatus. Examples include PE class, treadmill, and cycle ergometer. Measures Steps: No Measures Steps: No Measures MIIT: Noattention lave age puscal education of on-task behavior or time on task, the Woodcock-Johnson test of Concentration, and the Cognitive Assessment System). In the laboratory studies, the measurement of attention was more comparable; either a computerized visual attention task or (modified) flanker tasks were used.attention levels of children. A systematic review was performed of English studies from searches in PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies, of children aged 4-18 years old were included, detailing acute effects of and miconclusive. The methodological differences in study sample (size and age), study design and measurement of attention was more comparable; either a computerized visual attention task or (modified) flanker tasks were used.Examine Cardiorespiratory Fitness as Outcome: Noattention task or (modified) flanker tasks were used.	Purpose: To describe the effects of acute bouts	Abstract: The aim of this review was to describe
Timeframe: 1990–May 2014was performed of English studies from searches in PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies of children aged 4-18 years old were included, detailing acute effects of physical education lesson, in-between lessons, at the playground, or as an energizer during class. The PA bouts could be performed with or without equipment or apparatus. Examples include PE class, treadmill, and cycle ergometer.Was performed of English studies from searches in PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies of children aged 4-18 years old were included, detailing acute effects of physical activity bouts with the primary outcome attention. One reviewer extracted data on the study characteristics. Two reviewers conducted the methodological quality assessment independently using a criteria checklist, which was based on the Downs and Black checklist for non- randomised studies. Overall the evidence is thin and inconclusive. The methodological differences in study sample (size and age), study design and measurement of attention were done (D2-test, observation of on-task behavior or time on task, the Woodcock-Johnson test of Concentration, and the Cognitive Assessment System). In the laboratory studies, the measurement of attention was more comparable; either a computerized visual attention task or (modified) flanker tasks were used.was performed of English studies from searches in PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies of children aged 4-18 years old were included, detailing acute effects of publical activity bouts with the primary outcome attention. One reviewere stracted data on the study sample (size	of physical activity (PA) on attention levels of	the effects of acute bouts of physical activity on
Total # of Studies: 12PubMed, Sportdiscus and PsycINFO from 1990 toExposure Definition: Short PA bout (i.e., max 45 minutes) and various levels of PA intensity were included. PA bouts could be performed during a physical education lesson, in-between lessons, at the playground, or as an energizer during class. The PA bouts could be performed with or without equipment or apparatus. Examples include PE class, treadmill, and cycle ergometer.Only prospective studies of children aged 4-18 years old were included, detailing acute effects of physical activity bouts with the primary outcome attention. One reviewer extracted data on the study characteristics. Two reviewers conducted the methodological quality assessment independently using a criteria checklist, which was based on the Downs and Black checklist for non- randomised studies. Overall the evidence is thin and inconclusive. The methodological differences in study sample (size and age), study design and measurement of attention were done (D2-test, observation of on-task behavior or time on task, the Woodcock-Johnson test of Concentration, and the Cognitive Assessment System). In the laboratory studies, the measurement of attention was more comparable; either a computerized visual attention task or (modified) flanker tasks were used.PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies of children aged 4-18 years old were included, detailing acute effects of physical activity bouts with the primary outcome attention. One reviewer extracted data on the study characteristics. Two revieweres conducted the methodological differences in study sample (size and age), study design and measurement of attention was more comparable; either a computerized visual attention. More experimental studies with a <br< td=""><td>children.</td><td>4 7</td></br<>	children.	4 7
 Exposure Definition: Short PA bout (i.e., max 45 minutes) and various levels of PA intensity were included. PA bouts could be performed during a physical education lesson, in-between lessons, at the playground, or as an energizer during class. The PA bouts could be performed with or without equipment or apparatus. Examples include PE class, treadmill, and cycle ergometer. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: In a school setting, four different measurements of attention were done (D2-test, observation of on-task behavior or time on task, the Woodcock-Johnson test of Concentration, and the Cognitive Assessment System). In the laboratory studies, the measurement of attention was more comparable; either a computerized visual attention task or (modified) flanker tasks were used. Examine Cardiorespiratory Fitness as Outcomes 	-	, , ,
minutes) and various levels of PA intensity were included. PA bouts could be performed during a physical education lesson, in-between lessons, at the playground, or as an energizer during class. The PA bouts could be performed with or without equipment or apparatus. Examples include PE class, treadmill, and cycle ergometer. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: In a school setting, four different measurements of attention were done (D2-test, observation of on-task behavior or time on task, the Woodcock-Johnson test of Concentration, and the Cognitive Assessment System). In the laboratory studies, the measurement of attention was more comparable; either a computerized visual attention task or (modified) flanker tasks were used. Examine Cardiorespiratory Fitness as Outcome: No	Total # of Studies: 12	
used. Examine Cardiorespiratory Fitness as Outcome: No	Total # of Studies: 12 Exposure Definition: Short PA bout (i.e., max 45 minutes) and various levels of PA intensity were included. PA bouts could be performed during a physical education lesson, in-between lessons, at the playground, or as an energizer during class. The PA bouts could be performed with or without equipment or apparatus. Examples include PE class, treadmill, and cycle ergometer. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: In a school setting, four different measurements of attention were done (D2-test, observation of on-task behavior or time on task, the Woodcock-Johnson test of Concentration, and the Cognitive Assessment System). In the laboratory studies, the measurement of attention was more comparable; either a computerized visual	PubMed, Sportdiscus and PsycINFO from 1990 to (May) 2014 according to the PRISMA statement. Only prospective studies of children aged 4-18 years old were included, detailing acute effects of physical activity bouts with the primary outcome attention. One reviewer extracted data on the study characteristics. Two reviewers conducted the methodological quality assessment independently using a criteria checklist, which was based on the Downs and Black checklist for non- randomised studies. Overall the evidence is thin and inconclusive. The methodological differences in study sample (size and age), study design and measurement of attention make it difficult to compare results. There is weak evidence for the effect of acute bouts of physical activity on attention. More experimental studies with a comparable methodology, especially in the school
Examine Cardiorespiratory Fitness as Outcome: No		
No		
Populations Analyzed: Youth 4–18Author-Stated Funding Source: Not Reported		
	Populations Analyzed: Youth 4–18	Author-Stated Funding Source: Not Reported

Meta-Analysis	
Citation: Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of exercise	
on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Ageing	
Res Rev. 2014;16:12-31. Doi:10.1016/j.arr.2014.05.002.	
Purpose: To examine the impact of aerobic	Abstract: Data from epidemiological, cross-sectional,
exercise, resistance training, and Tai Chi on	and neuroimaging research show a relationship
the cognitive function of older adults	between higher levels of exercise and reduced risk of
without known cognitive impairment.	cognitive decline but evidence from randomised
Timeframe: 2002–2012	controlled trials (RCTs) is less consistent. This review
Total # of Studies: 25	examines the impact of aerobic exercise, resistance
Exposure Definition: Aerobic exercise,	training, and Tai Chi on the cognitive function of older
resistance training, or Tai Chi. Duration of	adults without known cognitive impairment. We
the interventions lasted 12 weeks to 6	investigate explanations for inconsistent results across
months.	trials and discrepancies between evidence from RCTs
Measures Steps: No	and other research data. Twenty-five RCTs were
Measures Bouts: No	included in the review. Meta-analysis results revealed
Examines HIIT: No	significant improvements for resistance training
Outcomes Addressed: Cognitive function,	compared to stretching/toning on measures of
divided into the domains of memory and	reasoning (p<0.005); and for Tai Chi compared to 'no
executive function. Memory domain sub-	exercise' controls on measures of attention (p<0.001)
categories were: recognition, immediate	and processing speed (p<0.00001). There were no
recall, delayed recall, face-name recall, and	significant differences between exercise and controls
paired associates. Executive function	on any of the remaining 26 comparisons. Results
domain subcategories were: working	should be interpreted with caution however as
memory, verbal fluency, reasoning,	differences in participant profiles, study design,
attention, and processing speed. Composite	exercise programmes, adherence rates, and outcome
measures of cognitive function were also	measures contribute to both discrepancies within the
included.	exercise research literature and inconsistent results
Examine Cardiorespiratory Fitness as	across trials.
Outcome: No	
Populations Analyzed: Adults ≥50	Author-Stated Funding Source: Not Reported

Meta-Analysis	Meta-Analysis	
Citation: Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task		
performance: a meta-regression analysis. Brain Res. 2010;1341:12-24.		
doi:10.1016/j.brainres.2010.03.09	1.	
Purpose: To examine the effects	Abstract: The effects of acute exercise on cognitive performance	
of acute exercise on cognitive	were examined using meta-analytic techniques. The overall mean	
performance.	effect size was dependent on the timing of cognitive assessment.	
Timeframe: 1900–2008	During exercise, cognitive task performance was impaired by a	
Total # of Studies: 40	mean effect of -0.14. However, impairments were only observed	
Exposure Definition: Exercise	during the first 20min of exercise. Otherwise, exercise-induced	
intervention elicited the	arousal enhanced performance on tasks that involved rapid	
activation of large muscles and	decisions and automatized behaviors. Following exercise,	
cardiovascular responses. Three	cognitive task performance improved by a mean effect of 0.20.	
different exercise demands were	Arousal continued to facilitate speeded mental processes and also	
looked at: fatigue, steady state,	enhanced memory storage and retrieval. Positive effects were	
and inverted U. Subgroup	observed following exercise regardless of whether the study	
analysis based on running and	protocol was designed to measure the effects of steady-state	
cycling.	exercise, fatiguing exercise, or the inverted-U hypothesis. Finally,	
Measures Steps: No	cognitive performance was affected differentially by exercise	
Measures Bouts: No	mode. Cycling was associated with enhanced performance during	
Examines HIIT: No	and after exercise, whereas treadmill running led to impaired	
Outcomes Addressed: Response	performance during exercise and a small improvement in	
time of pre- and post-exercise	performance following exercise. These results are indicative of the	
cognitive function tasks.	complex relation between exercise and cognition. Cognitive	
Examine Cardiorespiratory	performance may be enhanced or impaired depending on when it	
Fitness as Outcome: No	is measured, the type of cognitive task selected, and the type of	
	exercise performed.	
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported	

Meta-Analysis

Citation: Li MY, Huang MM, Li SZ, Tao J, Zheng GH, Chen LD. The effects of aerobic exercise on the structure and function of DMN-related brain regions: A systematic review. *Int J Neurosci.* 2016;127(7):634-649.

Purpose: To assess the effects of aerobic exercise on the structure and function of the default mode network regions of the brain in adulthood.

Timeframe: Inception-2015

Total # of Studies: 14 Exposure Definition: The frequencies of aerobic exercise ranged from 2 to 6 sessions weekly. The sessions ranged from 20 to 90 minutes in duration and were conducted for 3 to 12 months. In the included studies, the exercise intensities were described as follows: in nine studies, 60% to 80% maximum heart rate; in two studies, a heart rate that generated a blood lactate concentration of 1.5–2 mmol/L; in two studies, a rating of perceived exertion (RPE) of 12 to 14 (on Borg's 6–20 scale) and in one study, a gas exchange threshold above that of aerobic but below that of anaerobic exercise. Measures Steps: No Measures Bouts: No

Measures Bouts: No Examines HIIT: No

Outcomes Addressed: Any structural or connective change in the brain regions related to the default mode network as measured by magnetic resonance imaging. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Adults **Abstract:** Physical activity may play a role in both the prevention and slowing of brain volume loss and may be beneficial in terms of improving the functional connectivity of brain regions. But much less is known about the potential benefit of aerobic exercise for the structure and function of the default mode network (DMN) brain regions. This systematic review examines the effects of aerobic exercise on the structure and function of DMN brain regions in human adulthood. Seven electronic databases were searched for prospective controlled studies published up to April 2015. The quality of the selected studies was evaluated with the Cochrane Collaboration's tool for assessing the risk of bias. RevMan 5.3 software was applied for data analysis. Finally, 14 studies with 631 participants were identified. Meta-analysis revealed that aerobic exercise could significantly increase right hippocampal volume (SMD = 0.26, 95% CI 0.01-0.51, p = 0.04, I2 = 7%, 4 studies), and trends of similar effects were observed in the total (SMD = 0.12, 95% CI -0.17 to 0.41, p = 0.43, I2 = 0%, 5 studies), left (SMD = 0.12, 95% CI -0.13 to 0.37, p = 0.33, I2 = 14%, 4 studies), left anterior (SMD = 0.12, 95% CI -0.16 to 0.40, p = 0.41, I2 = 74%, 2 studies) and right anterior (SMD = 0.10, 95% CI -0.17 to 0.38, p = 0.46, I2 = 76%, 4 studies) hippocampal volumes compared to the no-exercise interventions. A few studies reported that relative to no-exercise interventions, aerobic exercise could significantly decrease the atrophy of the medial temporal lobe, slow the anterior cingulate cortex (ACC) volume loss, increase functional connectivity within the hippocampus and improve signal activation in the cingulate gyrus and ACC. The current review suggests that aerobic exercise may have positive effects on the right hippocampus and potentially beneficial effects on the overall and other parts of the hippocampus, the cingulate cortex and the medial temporal areas of the DMN. Moreover, aerobic exercise may increase functional connectivity or activation in the hippocampus, cingulate cortex and parahippocampal gyrus regions of the DMN. However, considering the quantity and limitations of the included studies, the conclusion could not be drawn so far. Additional randomized controlled trials (RCTs) with rigorous designs and longer intervention periods are needed in the future. Author-Stated Funding Source: National Natural Science

Foundation of China, Fujian Collaboration Innovation Center for Rehabilitation Technology

Meta-Analysis	
	lsboer-Trachsler E, Pühse U. Acute effects of moderate
aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-	
analysis. <i>Psychophysiology.</i> 2016;53(11):1611-1626. doi:10.1111/psyp.12736.	
Purpose: To investigate transient	Abstract: Whereas a wealth of studies have investigated
changes in participants' performance	acute effects of moderate aerobic exercise on executive
on executive function tasks after a	function, the roles of age, fitness, and the component of
single aerobic exercise session.	executive function in this relationship still remain unclear.
Timeframe: 1995–2015	Therefore, the present meta-analysis investigates exercise-
Total # of Studies: 40	induced benefits on specific aspects of executive function
Exposure Definition: A single dose of	in different age and aerobic fitness subgroups. Based on
moderate intensity aerobic exercise	data from 40 experimental studies, a small effect of
(cycling, running, or mixed aerobic	aerobic exercise on time-dependent measures (g = .35) and
activities). Moderate intensity exercise	accuracy (g = .22) in executive function tasks was
was defined as exercise at 55–70% of	confirmed. The results further suggest that preadolescent
maximal heart rate, 40–60% of heart	children (g = .54) and older adults (g = .67) compared to
rate reserve, 40–60% maximal oxygen	other age groups benefit more from aerobic exercise when
consumption (VO2 max), or rating 11–	reaction time is considered as dependent variable. In
13 on the perceived exertion scale.	contrast to age, aerobic fitness and the executive function
Measures Steps: No	component had no influence on the obtained effect sizes.
Measures Bouts: No	Consequently, high aerobic fitness is no prerequisite for
Examines HIIT: No	temporary improvements of the executive control system,
Outcomes Addressed: Executive	and low- as well as high-fit individuals seem to benefit
function as assessed by inhibitory	from exercise in a similar way. However, a higher
control, shifting, and working memory	sensitivity of executive function to acute aerobic exercise
(no units provided).	was found in individuals undergoing developmental
Examine Cardiorespiratory Fitness as	changes. Therefore, preadolescent children and older
Outcome: No	adults in particular might strategically use a single aerobic
	exercise session to prepare for a situation demanding high
	executive control.
Populations Analyzed: All ages	Author-Stated Funding Source: Not Reported
(categorized as pre-adolescent children,	
adolescents, young adults, and older	
adults)	

Meta-Analysis	
Citation: McMorris T, Hale BJ. Differential effects of differing intensities of acute exercise on speed	
and accuracy of cognition: A meta-analytical investigation. <i>Brain Cogn.</i> 2012;80(3):338-351.	
doi:10.1016/j.bandc.2012.09.001.	
Purpose: To examine the differential	Abstract: The primary purpose of this study was to
effects of differing intensities of acute	examine, using meta-analytical techniques, the
exercise on speed and accuracy of	differential effects of differing intensities of acute
cognition.	exercise on speed and accuracy of cognition. Overall,
Timeframe: Not Reported	exercise demonstrated a small, significant mean effect
Total # of Studies: 53	size (g=0.14, p<0.01) on cognition. Examination of the
Exposure Definition: Intensity of exercise	comparison between speed and accuracy dependent
that activated large muscle groups.	variables showed that speed accounted for most of the
Exercise intensity was based on objective	effect. For speed, moderate intensity exercise
measures; low intensity group was <40%	demonstrated a significantly larger mean effect size than
of maximum power output, moderate	those for low and high intensities. For speed of
was 40–79%, and high was >80%. When	processing during moderate intensity exercise, central
percentage of maximum power output	executive tasks showed a larger effect size than recall
was not available, other indicators were	and alertness/attention tasks; and mean effect size for
used such as heart rate reserve, heart	counterbalanced or randomized studies was significantly
rate, ventilatory threshold, and maximum	greater than for studies in which a pre-exercise followed
aerobic power.	by during or post-exercise protocol was used. There was
Measures Steps: No	no significant difference between mean effect sizes when
Measures Bouts: No	testing took place post-exercise compared to during
Examines HIIT: No	exercise for speed but accuracy studies demonstrated a
Outcomes Addressed: Processing speed	significantly larger mean effect size post-exercise. It was
and/or accuracy of performing various	concluded that increased arousal during moderate
working memory tasks, such as switch	intensity exercise resulted in faster speed of processing.
visual attention, Tower of Hanoi, and	The very limited effect on accuracy may be due to the
soccer decision-making.	failure to choose tests which are complex enough to
Examine Cardiorespiratory Fitness as	measure exercise-induced changes in accuracy of
Outcome: No	performance.
Populations Analyzed: All ages	Author-Stated Funding Source: Not Reported

Citation: Morrison JD, Mayer L. Physical activity and cognitive function in adults with multiple sclerosis: An integrative review. *Disabil Rehabil.* 2016:1-12.

Scierosis. All integrative review. Disubli Rend	2010.1-12.
Purpose: To examine the literature	Abstract: PURPOSE: To identify and synthesize the
describing the relationship between	research evidence concerning (1) the relationship
physical activity (PA) and cognitive	between physical activity and cognitive performance in
function in persons with multiple sclerosis,	persons with multiple sclerosis (MS) and (2) to review
and review the evidence concerning the	the reported effects of physical activity interventions on
effects of physical activity interventions on	neurocognitive performance conducted in this
cognitive function in persons with multiple	population. METHODS: Relevant peer-reviewed journal
sclerosis.	articles were identified by searching PubMed,
Timeframe: Inception-2016	PsychINFO, and SPORTDiscus through May 2016. Full-
Total # of Studies: 19	text articles meeting the inclusion criteria were
Exposure Definition: The mode of exercise	evaluated for quality using tools developed by the
included resistance training, aerobic	National Institutes of Health. Studies deemed to be of
training (treadmill walking, cycling,	poor quality were excluded from the review. RESULTS:
rowing, sport climbing, and arm	Nineteen studies meeting the inclusion/exclusion
ergometry), and yoga, as well as	criteria were analyzed. Nine studies reported significant
participation in a web-based PA behavior	relationships between higher levels of physical activity
program. Intervention duration ranged	or cardiorespiratory fitness and measures of cognitive
from 8 weeks to 6 months. Exercise	function. Data extracted from 10 physical activity
session length ranged from 30 to 90	intervention studies reported mixed results on the
minutes, and the frequency of sessions	effectiveness of physical activity to improve selected
varied from 1 to 3 times a week.	domains of cognitive function in persons with MS.
Measures Steps: Yes	CONCLUSION: Although correlational studies provide
Measures Bouts: No	evidence to support a linkage between physical activity
Examines HIIT: No	and cognitive function in persons with MS, this linkage is
Outcomes Addressed: Cognition domains	confounded by factors that may have influenced the
including sustained and complex	studies' results. Evidence derived from intervention
attention, concentration, working and	studies that could support a positive effect of physical
secondary memory, information	activity on cognition in persons with MS is equivocal.
processing speed, visuospatial skills, verbal	Implications for Rehabilitation Physical activity has
fluency, and executive function planning,	numerous benefits for persons with multiple sclerosis
organization, judgment, reasoning, and	(MS) including improvements in balance, ambulation,
problem solving.	depression, fatigue, and quality of life. Structured
Examine Cardiorespiratory Fitness as	physical activity programs may contribute to cognitive
Outcome: No	function stability or improvement in persons with MS.
Populations Analyzed: Adults, Multiple	Author-Stated Funding Source: International
Sclerosis	Organization of Multiple Sclerosis Nurses; National
	Institute of Nursing Research, National Institutes of
	Health

Citation: Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. The effects of exercise on cognition in Parkinson's disease: A systematic review. *Transl Neurodegener*. 2014;3(1):5. doi:10.1186/2047-9158-3-5.

Purpose: To evaluate all original research reports that assessed exercise interventions in human Parkinson's disease or in animal models of Parkinson's disease, with a primary or secondary outcome to examine cognitive function. Timeframe: 1966–October 2013 Total # of Studies: 14 Exposure Definition: An exercise intervention was defined as any purposeful increase in the subject's physical activity through a single bout of exercise or prolonged exercise over the course of a structured or unstructured program. Examples include tango (dancing), cycling, Wii Fit training, and stretching. Measures Steps: No Measures Bouts: No Examines HIIT: No **Outcomes Addressed:** Changes in behavioral or neurobiological markers of cognitive function. Examine **Cardiorespiratory Fitness** as Outcome: No

Populations Analyzed: Older Adults, Parkinson's Disease

Abstract: Cognitive impairments are highly prevalent in Parkinson's disease (PD) and can substantially affect a patient's quality of life. These impairments remain difficult to manage with current clinical therapies, but exercise has been identified as a possible treatment. The objective of this systematic review was to accumulate and analyze evidence for the effects of exercise on cognition in both animal models of PD and human disease. This systematic review was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Fourteen original reports were identified, including six pre-clinical animal studies and eight human clinical studies. These studies used various exercise interventions and evaluated many different outcome measures; therefore, only a qualitative synthesis was performed. The evidence from animal studies supports the role of exercise to improve cognition in humans through the promotion of neuronal proliferation, neuroprotection and neurogenesis. These findings warrant more research to determine what roles these neural mechanisms play in clinical populations. The reports on cognitive changes in clinical studies demonstrate that a range of exercise programs can improve cognition in humans. While each clinical study demonstrated improvements in a marker of cognition, there were limitations in each study, including non-randomized designs and risk of bias. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used and the guality of the evidence for human studies were rated from "low" to "moderate" and the strength of the recommendations were rated from "weak" to "strong". Studies that assessed executive function, compared to general cognitive abilities, received a higher GRADE rating. Overall, this systematic review found that in animal models exercise results in behavioral and corresponding neurobiological changes in the basal ganglia related to cognition. The clinical studies showed that various types of exercise, including aerobic, resistance and dance can improve cognitive function, although the optimal type, amount, mechanisms, and duration of exercise are unclear. With growing support for exercise to improve not only motor symptoms, but also cognitive impairments in PD, health care providers and policy makers should recommend exercise as part of routine management and neurorehabilitation for this disorder. Author-Stated Funding Source: None

Meta-Analysis			
Citation: Roig M, Nordbrandt S, Geertsen SS, Nielsen J	IB. The effects of cardiovascular exercise on		
human memory: A review with meta-analysis. Neuros	ci Biobehav Rev. 2013;37(8):1645-1666.		
doi:10.1016/j.neubiorev.2013.06.012.			
Purpose: To review the evidence for the use of	Abstract: We reviewed the evidence for the		
cardiovascular exercise to improve memory.	use of cardiovascular exercise to improve		
Timeframe: 1894–June 2012	memory and explored potential mechanisms.		
Total # of Studies: 41	Data from 29 and 21 studies including acute		
Exposure Definition: Acute and long-term	and long-term cardiovascular interventions		
cardiovascular exercise. Studies included fast	were retrieved. Meta-analyses revealed that		
walking, jogging, cycling, arm ergometer, and	acute exercise had moderate (SMD=0.26; 95%		
rhythmic muscle strengthening as modes of	Cl=0.03, 0.49; p=0.03; N=22) whereas long-		
cardiovascular exercise. Duration of exercise was 30	term had small (SMD=0.15; 95% CI=0.02, 0.27;		
seconds to 65 minutes, ranging from 4 to 14 weeks.	p=0.02; N=37) effects on short-term memory.		
Intensity of the exercise was categorized as light	In contrast, acute exercise showed moderate		
(<40% heart rate reserve), moderate (40–59% heart	to large (SMD=0.52; 95% CI=0.28, 0.75;		
rate reserve), vigorous (60–89% heart rate reserve)	p<0.0001; N=20) whereas long-term exercise		
or maximal (≥90% heart rate reserve); duration was	had insignificant effects (SMD=0.07; 95% CI=-		
categorized as short (<20 min) medium (20–40 min)	0.13, 0.26; p=0.51; N=22) on long-term		
or long (>40 min).	memory. We argue that acute and long-term		
Measures Steps: No	cardiovascular exercise represent two distinct		
Measures Bouts: No	but complementary strategies to improve		
Examines HIIT: No	memory. Acute exercise improves memory in a		
Outcomes Addressed: Changes in scores on tests of	time-dependent fashion by priming the		
human memory: Tests were considered to assess	molecular processes involved in the encoding		
short-term memory if they involved the retention of	and consolidation of newly acquired		
information over periods of a few seconds to 1–2	information. Long-term exercise, in contrast,		
minutes; and long-term memory tests were those	has negligible effects on memory but provides		
involving the retention of information over longer	the necessary stimuli to optimize the		
periods of time and thus were characterized by a	responses of the molecular machinery		
delay (>2 minutes) of the retention test in relation	responsible for memory processing.		
to the exposure to the information to be	Strategically combined, acute and long-term		
remembered.	interventions could maximize the benefits of		
Examine Cardiorespiratory Fitness as Outcome: No	cardiovascular exercise on memory.		
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported		

Citation: Sexton CE, Betts JF, Demnitz N, Dawes H, Ebmeier KP, Johansen-Berg H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. *Neuroimage*. 2016;131:81-90. doi:10.1016/j.neuroimage.2015.09.071.

Purpose: To provide a systematic report of cross-sectional and longitudinal magnetic resonance imaging (MRI) studies that have examined the effects of physical fitness or physical activity (PA) on the white matter of the aging brain.Abstract: Higher levels of physical fitness or activity (PFA) have been shown to have beneficial effects on cognitive function and grey matter volumes in older adults. However, the relationship between PFA and the brain's white matter (WM) is not yet well established. Here, we aim to provide a comprehensive and systematic review of magnetic resonance imaging studies examining the effects of PFA on the WM of the ageing brain. Twenty-nine studies were included in the review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for Health Research, Oxford Biomedical Research Centre	of the ageing brain. Neurointuge. 2010,151.85	50. doi:10.1010/j.iiedroimage.2015.05.071.
resonance imaging (MRI) studies that have examined the effects of physical fitness or physical activity (PA) on the white matter of the aging brain.cognitive function and grey matter volumes in older adults. However, the relationship between PFA and the brain's white matter (WM) is not yet well established. Here, we aim to provide a comprehensive and systematic review of magnetic resonance imaging total # of Studies: 29Total # of Studies: 29studies examining the effects of PFA on the WM of the ageing brain.Exposure Definition: Physical fitness and activity was assessed by fitness test, questionnaire, or accelerometry; or administered with an exercise intervention. Examples include questionnaires assessing average metabolic equivalent hours per week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.weilso been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	Purpose: To provide a systematic report of	Abstract: Higher levels of physical fitness or activity
examined the effects of physical fitness or physical activity (PA) on the white matter of the aging brain.adults. However, the relationship between PFA and the brain's white matter (WM) is not yet well established. Here, we aim to provide a comprehensive and systematic review of magnetic resonance imaging studies examining the effects of PFA on the WM of the ageing brain. Twenty-nine studies were included in the review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures Steps: No Measures Steps: No Measures Steps: No Measures Steps: No Measures Steps: No Measures Steps: No Measures Guts: No Examines HIIT: NoProulations Analyzed: Older adultsOutcome: NoPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	cross-sectional and longitudinal magnetic	(PFA) have been shown to have beneficial effects on
physical activity (PA) on the white matter of the aging brain.the brain's white matter (WM) is not yet well established. Here, we aim to provide a comprehensive and systematic review of magnetic resonance imaging studies examining the effects of PFA on the WM of the ageing brain. Twenty-nine studies were included in the review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adultsPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	resonance imaging (MRI) studies that have	cognitive function and grey matter volumes in older
the aging brain.established. Here, we aim to provide a comprehensiveTimeframe: Inception-2015and systematic review of magnetic resonance imagingTotal # of Studies: 29studies examining the effects of PFA on the WM of theExposure Definition: Physical fitness and activity was assessed by fitness test, questionnaire, or accelerometry; or administered with an exercise intervention. Examples include questionnaires assessing average metabolic equivalent hours per week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adults	examined the effects of physical fitness or	adults. However, the relationship between PFA and
Timeframe: Inception-2015and systematic review of magnetic resonance imaging studies: 29Total # of Studies: 29studies examining the effects of PFA on the WM of the ageing brain. Twenty-nine studies were included in the review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Timeframe: Inception-2015Author-Stated Funding Source: National Institute for		
Total # of Studies: 29studies examining the effects of PFA on the WM of the ageing brain. Twenty-nine studies were included in the review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	the aging brain.	established. Here, we aim to provide a comprehensive
Exposure Definition: Physical fitness and activity was assessed by fitness test, questionnaire, or accelerometry; or administered with an exercise intervention. Examples include questionnaires assessing average metabolic equivalent hours per week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.ageing brain. Twenty-nine studies were included in the review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	Timeframe: Inception-2015	,
activity was assessed by fitness test, questionnaire, or accelerometry; or administered with an exercise intervention.review: eleven examined WM volume, fourteen WM lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	Total # of Studies: 29	studies examining the effects of PFA on the WM of the
questionnaire, or accelerometry; or administered with an exercise intervention. Examples include questionnaires assessing average metabolic equivalent hours per week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.lesions, and nine WM microstructure. While many studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	Exposure Definition: Physical fitness and	
administered with an exercise intervention. Examples include questionnaires assessing average metabolic equivalent hours per week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.studies found that higher levels of PFA were associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	activity was assessed by fitness test,	
Examples include questionnaires assessing average metabolic equivalent hours per week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.associated with greater WM volumes, reduced volume or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	questionnaire, or accelerometry; or	
average metabolic equivalent hours per week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.or severity of WM lesions, or improved measures of WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	administered with an exercise intervention.	-
week over 10 years, a 6-point scale for PA, number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.WM microstructure, a number of negative findings have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	Examples include questionnaires assessing	-
number of activities per week, peak oxygen uptake, and kilocalories per week over 2 weeks.have also been published. Meta-analyses of global measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	average metabolic equivalent hours per	
uptake, and kilocalories per week over 2 weeks.measures of WM volume and WM lesion volume yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	week over 10 years, a 6-point scale for PA,	
weeks.yielded significant, but small, effect sizes. Overall, we found evidence for cautious support of links between PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	number of activities per week, peak oxygen	
Measures Steps: Nofound evidence for cautious support of links betweenMeasures Bouts: NoPFA and WM structure, and highlighted key areas forExamines HIIT: Norelationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship betweenOutcome: NoPFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	uptake, and kilocalories per week over 2	
Measures Bouts: NoPFA and WM structure, and highlighted key areas for future research including the extent to which theOutcomes Addressed: Changes in volume of white matter of the brain as measured by magnetic resonance imaging. Lesions and microstructure of white matter.PFA and WM structure, and highlighted key areas for future research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Examine Cardiorespiratory Fitness as Outcome: NoPFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for		, _ ,
Examines HIIT: Nofuture research including the extent to which the relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Outcome: NoPopulations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for	Measures Steps: No	
Outcomes Addressed: Changes in volume of white matter of the brain as measured by magnetic resonance imaging. Lesions and microstructure of white matter.relationship between PFA and WM structure is anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Examine Cardiorespiratory Fitness as Outcome: NoPFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for		
white matter of the brain as measured by magnetic resonance imaging. Lesions and microstructure of white matter.anatomically specific, the influence of possible confounding factors, and the relationship between PFA, WM and cognition.Examine Cardiorespiratory Fitness as Outcome: NoPFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for		C C
magnetic resonance imaging. Lesions and microstructure of white matter.confounding factors, and the relationship between PFA, WM and cognition.Examine Cardiorespiratory Fitness as Outcome: NoPFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for		•
microstructure of white matter.PFA, WM and cognition.Examine Cardiorespiratory Fitness as Outcome: NoPFA, WM and cognition.Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for		
Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Older adults Author-Stated Funding Source: National Institute for		
Outcome: No Author-Stated Funding Source: National Institute for Populations Analyzed: Older adults Author-Stated Funding Source: National Institute for		PFA, WM and cognition.
Populations Analyzed: Older adultsAuthor-Stated Funding Source: National Institute for		
Health Research, Oxford Biomedical Research Centre	Populations Analyzed: Older adults	-
		Health Research, Oxford Biomedical Research Centre

Meta-Analysis		
-	nan BM et al. Aerobic exercise and neurocognitive	
Citation: Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. <i>Psychosom Med</i> .		
2010;72(3):239-252. Doi:10.1097/PSY.0b013e3181d14633.		
Purpose: To understand the effects of	Abstract: OBJECTIVES: To assess the effects of aerobic	
aerobic exercise training on specific	exercise training on neurocognitive performance. Although	
domains of neurocognitive	the effects of exercise on neurocognition have been the	
performance, including attention and	subject of several previous reviews and meta-analyses, they	
processing speed, executive function,	have been hampered by methodological shortcomings and	
working memory, and memory.	are now outdated as a result of the recent publication of	
Timeframe: January 1966–July 2009	several large-scale, randomized, controlled trials (RCTs).	
Total # of Studies: 29	METHODS: We conducted a systematic literature review of	
Exposure Definition: Aerobic exercise	RCTs examining the association between aerobic exercise	
such as brisk walking, biking, or	training on neurocognitive performance between January	
jogging that lasted more than one	1966 and July 2009. Suitable studies were selected for	
month.	inclusion according to the following criteria: randomized	
Measures Steps: No	treatment allocation; mean age > or =18 years of age;	
Measures Bouts: No	duration of treatment >1 month; incorporated aerobic	
Examines HIIT: No	exercise components; supervised exercise training; the	
Outcomes Addressed: Attention and	presence of a nonaerobic-exercise control group; and	
processing speed (Digit Symbol	sufficient information to derive effect size data. RESULTS:	
Substitution, Complex/Choice	Twenty-nine studies met inclusion criteria and were included	
Reaction Time, Ruff 2 & 7 Test, Trail	in our analyses, representing data from 2049 participants	
Making Test Section A), executive	and 234 effect sizes. Individuals randomly assigned to	
function (Stroop Interference, Trail	receive aerobic exercise training demonstrated modest	
Making Test Section B, Animal	improvements in attention and processing speed (g = 0.158;	
Naming/Verbal Fluency, Controlled	95% confidence interval [Cl]; 0.055-0.260; p = .003),	
Oral Word Association Test), working	executive function (g = 0.123; 95% Cl, 0.021-0.225; p = .018),	
memory (Digit Span, WAIS Letter-	and memory (g = 0.128; 95% CI, 0.015-0.241; p = .026).	
Number Sequencing), and declarative	CONCLUSIONS: Aerobic exercise training is associated with	
memory (Logical Memory, Immediate	modest improvements in attention and processing speed,	
Recall, Rey Auditory Verbal Learning	executive function, and memory, although the effects of	
Test).	exercise on working memory are less consistent. Rigorous	
Examine Cardiorespiratory Fitness as	RCTs are needed with larger samples, appropriate controls,	
Outcome: No	and longer follow-up periods.	
Populations Analyzed: Adults	Author-Stated Funding Source: National Institutes of Health,	
	General Clinical Research Center Program, National Center	
	for Research Resources	

Meta-Analysis		
Citation: Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: A meta-		
analysis of prospective studies. J Intern Med. 2011;269(1):107-117. doi:10.1111/j.1365-		
2796.2010.02281.x.		
Purpose: To conduct a meta-analysis	Abstract: OBJECTIVE: The relationship between physical	
of all the available prospective	activity and cognitive function is intriguing but controversial.	
cohort studies that investigated the	We performed a systematic meta-analysis of all the available	
association between physical activity	prospective studies that investigated the association between	
(PA) and cognitive decline in	physical activity and risk of cognitive decline in nondemented	
nondemented subjects.	subjects. METHODS: We conducted an electronic literature	
Timeframe: 1966–January 2010	search through MedLine, Embase, Google Scholar, Web of	
Total # of Studies: 15	Science, The Cochrane Library and bibliographies of retrieved	
Exposure Definition: PA was	articles up to January 2010. Studies were included if they	
assessed through questionnaires	analysed prospectively the association between physical	
(with some being self-reported).	activity and cognitive decline in nondemented subjects.	
Some questionnaires assessed	RESULTS: After the review process, 15 prospective studies (12	
intensity levels, whereas others	cohorts) were included in the final analysis. These studies	
calculated energy expenditure. PA	included 33,816 nondemented subjects followed for 1-12	
levels were also categorized in	years. A total of 3210 patients showed cognitive decline	
different ways, such as "none, low,	during the follow-up. The cumulative analysis for all the	
moderate, high"; <30 minutes, 60, or	studies under a random-effects model showed that subjects	
>60 minutes per day; quartiles; and <	who performed a high level of physical activity were	
or > 4 hours per week.	significantly protected (-38%) against cognitive decline during	
Measures Steps: No	the follow-up (hazard ratio (HR) 0.62, 95% confidence interval	
Measures Bouts: No	(CI) 0.54-0.70; P < 0.00001). Furthermore, even analysis of	
Examines HIIT: No	low-to-moderate level exercise also showed a significant	
Outcomes Addressed: Cognitive	protection (-35%) against cognitive impairment (HR 0.65, 95%	
decline or cognitive impairment,	CI 0.57-0.75; P < 0.00001). CONCLUSION: This is the first	
defined as decline in cognitive	meta-analysis to evaluate the role of physical activity on	
functioning tests at follow-up	cognitive decline amongst nondemented subjects. The	
examination.	present results suggest a significant and consistent protection	
Examine Cardiorespiratory Fitness	for all levels of physical activity against the occurrence of	
as Outcome: No	cognitive decline.	
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported	

Meta-Analysis		
Citation: Spruit A, Assink M, van Vugt E, van der Put C, Stams GJ. The effects of physical activity		
interventions on psychosocial outcomes in adolescents: A meta-analytic review. Clin Psychol Rev.		
2016;45:56-71. doi:10.1016/j.cpr.2016.03.006.		
Purpose: To investigate the effects of	Abstract: Physical activity interventions are often	
physical activity (PA) interventions on four	implemented in the adolescent mental health care	
psychosocial outcomes in adolescents:	practice to prevent or treat psychosocial problems. To	
externalizing problems, internalizing	date, no systematic review of the effect of these	
problems, self-concept, and academic	physical activity interventions in adolescents has been	
achievement.	conducted. In the current study, four multilevel meta-	
Timeframe: Inception-2015	analyses were performed to assess the overall effect	
Total # of Studies: 57	of physical activity interventions on externalizing	
Exposure Definition: PA intervention	problems, internalizing problems, self-concept, and	
consisted of sports or (aerobic) exercise	academic achievement in adolescents. In addition,	
activities. The duration of the intervention	possible moderating factors were examined. In total,	
(in weeks) and the frequency of the	57 studies reporting on 216 effect sizes were included,	
intervention (in hours per week) was	and the results showed significant small-to-moderate	
documented.	effects of physical activity interventions on	
Measures Steps: No	externalizing problems (d=0.320), internalizing	
Measures Bouts: No	problems (d=0.316), self-concept (d=0.297), and	
Examines HIIT: No	academic achievement (d=0.367). Further, moderator	
Outcomes Addressed: Externalizing	analyses showed that outcome, study, sample, and	
problems (aggressive or delinquent	intervention characteristics influenced the effects of	
behavior), internalizing problems, self-	physical activity interventions on psychosocial	
concept, and academic achievement.	outcomes. Implications for theory and practice	
Examine Cardiorespiratory Fitness as	concerning the use of physical activity interventions in	
Outcome: No	adolescent mental health care practice are discussed.	
Populations Analyzed: Youth 10–21	Author-Stated Funding Source: Not Reported	

Meta-AnalysisCitation: Tan BWZ, Pooley JA, Speelman CP. A meta-analytic review of the efficacy of physical exercise interventions on cognition in individuals with autism spectrum disorder and ADHD. J Autism Dev Disord. 2016;46(9):3126-3143. doi:10.1007/s10803-016-2854-x.Purpose: To investigate the efficacy of exercise interventions on individuals with autism spectrum disorder and attention deficit hyperactivity disorder, and explore the practical significance of applying exercise to cognition based on the meta- analytic findings.Abstract: This review evaluates the efficacy of using physical exercise interventions on improving cognitive functions in individuals with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) This review includes a meta-analysis based on rendem effects model of data reported in 22
 interventions on cognition in individuals with autism spectrum disorder and ADHD. J Autism Dev Disord. 2016;46(9):3126-3143. doi:10.1007/s10803-016-2854-x. Purpose: To investigate the efficacy of exercise interventions on individuals with autism spectrum disorder and attention deficit hyperactivity disorder, and explore the practical significance of applying exercise to cognition based on the meta- analytic findings. Abstract: This review evaluates the efficacy of using physical exercise interventions on improving cognitive functions in individuals with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD).
Disord. 2016;46(9):3126-3143. doi:10.1007/s10803-016-2854-x.Purpose: To investigate the efficacy of exercise interventions on individuals with autism spectrum disorder and attention deficit hyperactivity disorder, and explore the practical significance of applying exercise to cognition based on the meta- analytic findings.Abstract: This review evaluates the efficacy of using physical exercise interventions on improving cognitive functions in individuals with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) This review includes a meta-analysis based on
Purpose: To investigate the efficacy of exercise interventions on individuals with autism spectrum disorder and attention deficit hyperactivity disorder, and explore the practical significance of applying exercise to cognition based on the meta- analytic findings.Abstract: This review evaluates the efficacy of using physical exercise interventions on improving cognitive functions in individuals with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) This review includes a meta-analysis based on
interventions on individuals with autism spectrum disorder and attention deficit hyperactivity disorder, and explore the practical significance of applying exercise to cognition based on the meta- analytic findings. using physical exercise interventions on improving cognitive functions in individuals with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) This review includes a meta-analysis based on
disorder and attention deficit hyperactivity disorder, and explore the practical significance of applying exercise to cognition based on the meta- analytic findings. improving cognitive functions in individuals with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) This review includes a meta-analysis based on
disorder, and explore the practical significance of applying exercise to cognition based on the meta- analytic findings. with autism spectrum disorder (ASD) and/or attention deficit hyperactivity disorder (ADHD) This review includes a meta-analysis based on
applying exercise to cognition based on the meta- analytic findings.attention deficit hyperactivity disorder (ADHD) This review includes a meta-analysis based on
analytic findings. This review includes a meta-analysis based on
Time from a 1000 2015
Timeframe: 1968–2015random-effects model of data reported in 22
Total # of Studies: 22studies with 579 participants aged 3-25 year
Exposure Definition: Exercise intervention: types old. The results revealed an overall small to
of exercises included exergaming, treadmill, cycle medium effect of exercise on cognition,
ergometers, and mixed-exercises at varying supporting the efficacy of exercise
durations (5–70 minutes). interventions in enhancing certain aspects of
Measures Steps: No cognitive performance in individuals with ASD
Measures Bouts: No and/or ADHD. Specifically, similar to the gener
Examines HIIT: No population literature, the cognitive benefits of
Outcomes Addressed: Cognitive tasks were exercise are not consistent across all aspects o
separated into two broad categories, on-task cognitive functions (i.e., some areas are not
duration/simple learning tasks (i.e., the length of improved). The clinical significance of the
time individuals stayed engaged on a specific task; reported effect sizes is also considered.
or for example, the number of correct responses
on the value of various coins presented) and global
executive functions.
Examine Cardiorespiratory Fitness as Outcome:
No
Populations Analyzed: Youth 3–25, CognitiveAuthor-Stated Funding Source: Not Reported
Disability, Autism Spectrum Disorder, Attention
Deficit Hyperactivity Disorder

Meta-Analysis	
Citation: Wu Y, Wang Y, Burgess EO, Wu J. The	e effects of Tai Chi exercise on cognitive function in
older adults: a meta-analysis. J Sport Health Sci. 2013;2(4):193-203.	
Purpose: To critically assess the effects of	Abstract: Background Cognitive impairment is
Tai Chi exercise on cognitive function in	prevalent among older adults and results in degraded
terms of global cognitive, executive, and	quality of life for older adults. As the population ages,
memory functions in older adults.	this may cause a huge burden to society. Research has
Timeframe: January 1992–July 2012	demonstrated that physical exercise is beneficial to
Total # of Studies: 8	cognitive function. The purpose of this meta-analysis
Exposure Definition: Tai chi; duration of	was to critically assess the effect of Tai Chi exercise on
sessions (20–40 minutes), sessions per week	global cognitive, executive, and memory functions in
(1–3), and duration of intervention (10	older adults. Methods After a thorough electronic
weeks to a year) varied among studies.	search and selection, eight studies were included in
Several different types of Tai Chi were	this meta-analysis with two cross-sectional and six
practiced in different studies.	intervention studies. Nine variables included in this
Measures Steps: No	meta-analysis were: mini mental status examination
Measures Bouts: No	(MMSE), Alzheimer's disease assessment scale-
Examines HIIT: No	cognitive subscale (ADAS-cog), trailmaking test part A
Outcomes Addressed: Neurocognitive tests,	(TMA), trailmaking test part B (TMB), digit span test
including different domains of cognitive	forward (DSF), digit span test backward (DSB), visual
function and global cognitive, executive, and	span test backward (VSB), verbal fluency test (VFT),
memory functions. Mini mental status	and word delay recall test (WDR). The effect sizes and
examination, Alzheimer's disease	forest plots of these nine variables were generated.
assessment scale-cognitive subscale,	Results Four (MMSE, DSB, VSB, and VFT) out of nine
trailmaking test part A, trailmaking test part	variables were significantly improved after Tai Chi
B, digit span test forward, digit span test	exercise with the effect sizes ranged from 0.20 to 0.46
backward, visual span test backward, verbal	(small to medium). MMSE represented global cognitive
fluency Test, and word delay recall test.	function, and DSB, VSB, and VFT represented memory
Examine Cardiorespiratory Fitness as	function. Conclusion Tai Chi as a mind-body exercise
Outcome: No	has the positive effects on global cognitive and
	memory functions, and more consistent positive
	effects were found on memory function, especially
Bonulations Analyzad: Adulta NEE	verbal working memory. Author-Stated Funding Source: Not Reported
Populations Analyzed: Adults ≥55	Author-Stated Funding Source: Not Reported

Meta-Analysis

Citation: Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: A systematic review and meta-analysis of randomised controlled trials. *Br J Sports Med.* 2016a;50:1443-1450.

controlled trials. Br J Sports Med. 2016a;50:	1443-1450.
Purpose: To systematically evaluate the	Abstract: OBJECTIVE: To evaluate the effect of aerobic
effect of aerobic exercise on cognitive	exercise on cognitive function in people with mild
function, including global cognitive ability	cognitive impairment (MCI). DESIGN: Systematic review
and specific domains of cognition, in older	and meta-analysis of aerobic exercise intervention for
adults with mild cognitive impairment.	cognitive function in older adults with MCI. DATA
Timeframe: Inception-2015	SOURCES: PubMed, EMBASE, SinoMed, China National
Total # of Studies: 11	Knowledge Infrastructure (CNKI), Wanfang and Chinese
Exposure Definition: The most commonly	Science and Technology Periodical (VIP) databases from
used aerobic exercise was regular walking,	their inception to 31 January 2015, the Cochrane Central
but handball training, Tai Chi, jogging	Register of Controlled Trials (Cochrane Library, 2015,
combined with Tai Chi, cycling, dance-	Issue 3) and the reference lists of all retrieved articles.
based aerobics, and multicomponent	ELIGIBILITY CRITERIA: Randomised controlled trials,
aerobic exercises were also practiced. The	older adults with MCI, aerobic exercises compared with
frequency of aerobic exercise varied from	no specific exercise intervention for global cognitive
two to five sessions weekly and 30–60	ability and any specific domains of cognition. DATA
minutes per session. The duration of the	SYNTHESIS: Meta-analysis was conducted with RevMan
intervention was 6 months or 1 year, with	V.5.3 software using the fixed-effect model for the
the exception of two studies, which were	available data without significant heterogeneity, or the
6 and 12 weeks, respectively.	random-effect model was used if appropriate. RESULTS:
Measures Steps: No	11 studies were identified involving 1497 participants.
Measures Bouts: No	Meta-analysis showed that aerobic exercise significantly
Examines HIIT: No	improved global cognitive ability (Mini-Mental State
Outcomes Addressed: Global cognitive	Examination (MMSE) scores: MD=0.98, 95% CI 0.5 to
function (Mini-Mental State Examination	1.45, p<0.0001; Montreal Cognitive Assessment (MoCA)
[MMSE], Alzheimer's Disease Assessment	scores: MD=2.7, 95% CI 1.11 to 4.29, p=0.0009); weakly,
Scale-Cognitive Subscale (ADAS-Cog),	positively improve memory (immediately recall:
Montreal Cognitive Assessment [MoCA]),	SMD=0.29, 95% CI 0.13 to 0.46, p=0.0005; delay recall:
memory (Rey Auditory Verbal Learning	SMD=0.22, 95% CI 0.09 to 0.34, p=0.0005). No significant
Test (AVLT), MMSE), attention (visual span	improvement was found in other domains of cognition.
and digital symbol coding), executive	CONCLUSIONS: Aerobic exercise led to an improvement
ability (Trail-Making Test or part B, Stroop	in global cognitive ability and had a positive effect with a
color word test-abridge task, and MoCA	small effect size on memory in people with MCI.
[clock drawing]), verbal fluency (verbal	However, owing to the limitations of the included
fluency test), and visuospatial function	studies, these findings should be interpreted cautiously.
(field of view).	
Examine Cardiorespiratory Fitness as	
Outcome: No	
Populations Analyzed: Adults ≥60, Mild	Author-Stated Funding Source: National Natural Science
Cognitive Impairment	Foundation of China, Collaboration Innovation Center
	for Rehabilitation Technology, Fujian provincial
	rehabilitation industrial institution, and Fujian Key
	Laboratory of Rehabilitation Technology

Systematic Review						
Citation: Zheng G, Zhou W, Xia R, Tao J, C	hen L. Aerobic exercises for cognition rehabilitation					
following stroke: A systematic review. J Stroke Cerebrovasc Dis. 2016b;25(11):2780-						
2789.doi:10.1016/j.jstrokecerebrovasdis.2016.07.035.						
Purpose: To assess the effects of	Abstract: BACKGROUND: Cognitive impairments are highly					
aerobic exercise on cognitive function	prevalent in stroke survivors and can substantially affect					
following stroke.	their physical rehabilitation and quality of life. The					
Timeframe: Inception–2015	management of these impairments currently remains					
Total # of Studies: 10	limited, but increasing studies reported the effect of					
Exposure Definition: Aerobic exercises,	aerobic exercise on cognitive performance in patients					
1 to 5 sessions weekly and ranged from	suffering from stroke. The purpose of this review was to					
20–90 minutes per session, with a	assess the effects of aerobic exercise on cognitive function					
varying duration of exercise of 8–24	following stroke. METHODS: Seven electronic databases					
weeks. The average intensity was	(China National Knowledge Infrastructure [CNKI], Chinese					
controlled to 50%–90% peak oxygen	Science and Technology Periodical Database [VIP],					
uptake or 60%–80% heart rate reserve.	Wanfang, China Biology Medicine disc [CBM], Science					
Exercise was cycling (alone or combined	Citation Index [SCI], EMBASE, and PubMed) were searched					
with other aerobic exercises), but Tai	from their inception to May 31, 2015, for the effects of					
Chi, yoga, and treadmill exercise were	aerobic exercise on cognitive ability compared to usual					
also practiced.	physical activity in stroke survivors. RevMan V5.3 (The					
Measures Steps: No	Nordic Cochrane Centre) was used to analyze the data and					
Measures Bouts: No	to evaluate the methodological quality of the included					
Examines HIIT: No	studies. RESULTS: Ten eligible studies including 394					
Outcomes Addressed: Global cognitive	participants were identified. Six studies showed that					
ability or on a specific domain of	aerobic exercise significantly improved global cognitive					
cognition, such as memory, attention,	ability in stroke survivors. Four studies reported aerobic					
language, processing speed, execution,	exercise to be beneficial in improving memory, but only					
verbal fluency, and visuospatial ability,	one showed statistical significance. Two studies					
that was measured using objective	investigated the effects of aerobic exercise on attention,					
measurements or scales such as the	and one showed a significant improvement. One study					
Montreal Cognitive Assessment, Stroke	reported a significant benefit of aerobic exercise on					
Impact Scale Domain, the Stroop task,	visuospatial ability in stroke survivors. No adverse events					
and the Digit Symbol Test.	were reported in the included studies. CONCLUSIONS:					
Examine Cardiorespiratory Fitness as	Aerobic exercise may have a positive effect on improving					
Outcome: No	global cognitive ability and a potential benefit on memory,					
	attention, and the visuospatial domain of cognition in					
	stroke survivors. However, further large, rigorously					
	designed trials are needed to confirm these findings.					
Populations Analyzed: Adults, Stroke	Author-Stated Funding Source: Fujian Provincial Health					
	and Family Planning Commission, Specialized Research					
	Fund for the Key Disciplines of FJTCM, Fujian Key					
	Laboratory of Rehabilitation Technology					

Table 3. Existing Systematic Reviews and Meta-Analyses Quality Assessment Chart

AMSTARExBP: SR/MA	Beckett, 2015	Bustama nte, 2016	Carson, 2016	Cerrillo- Urbina, 2015	Chang, 2012	Colcomb e, 2003
Comprehensive literature search performed.	Partially Yes	Partially Yes	Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	No	No	No	Yes	No	No
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	No	No	Yes	Yes	Yes
List of studies (included and excluded)	No	No	No	No	No	No
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	No	No
FITT defined and examined in relation to outcome effect sizes.	No	N/A	N/A	No	No	No
Scientific quality (risk of bias) of included studies assessed and documented.	No	No	Partially Yes	Yes	No	No
Results depended on study quality, either overall, or in interaction with moderators.	N/A	N/A	No	Yes	N/A	N/A
Scientific quality used appropriately in formulating conclusions.	N/A	N/A	Yes	Yes	N/A	N/A
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	N/A	N/A	Yes	Yes	Yes
Effect size index chosen justified, statistically.	Yes	N/A	N/A	Yes	Yes	Partially Yes
Individual-level meta- analysis used.	No	N/A	N/A	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	No	No	No	Yes	No	No
Conflict of interest disclosed.	Yes	Yes	No	No	No	No

AMSTARExBP: SR/MA	Den 2016	Dinoff, 2016	Donnelly , 2016	Esteban- Cornejo, 2015	Etnier, 2006	Falck, 2016
Comprehensive literature search performed.	Yes	Yes	Partially Yes	Yes	Yes	Partially Yes
Duplicate study selection and data extraction performed.	Yes	Yes	Yes	Yes	No	Yes
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	No	No	No	Yes	No
List of studies (included and excluded) provided.	No	No	No	No	No	No
Characteristics of included studies provided.	Yes	Yes	No	No	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	N/A	No	N/A	N/A	No	N/A
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	Yes	No	No	Yes
Results depended on study quality, either overall, or in interaction with moderators.	Yes	Yes	Yes	N/A	N/A	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	Yes	N/A	N/A	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	N/A	Yes	N/A	N/A	Yes	N/A
Effect size index chosen justified, statistically.	N/A	Yes	N/A	N/A	Yes	N/A
Individual-level meta- analysis used.	N/A	No	N/A	N/A	No	N/A
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	No	Yes	No	No	No	No
Conflict of interest disclosed.	No	Yes	No	No	No	Yes

AMSTARExBP: SR/MA	Firth, 2016	Groot, 2016	Halloway , 2016	Janssen, 2014	Kelly, 2014	Lambour ne, 2010
Comprehensive literature search performed.	Yes	Partially Yes	Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	Yes	No	Yes	No	Yes	No
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	No	No	No	No	No
List of studies (included and excluded) provided.	No	No	No	No	No	No
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	No	N/A	N/A	No	No
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	Partially Yes	Yes	Yes	No
Results depended on study quality, either overall, or in interaction with moderators.	Yes	Yes	No	No	No	N/A
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	No	Yes	Yes	N/A
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	No	N/A	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	N/A	Yes	Yes
Individual-level meta- analysis used.	No	No	N/A	N/A	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	Yes	No	No	No	No
Conflict of interest disclosed.	Yes	Yes	Yes	No	No	No

AMSTARExBP: SR/MA	Li, 2016	Ludyga, 2016	McMorri s, 2012	Morrison , 2016	Murray, 2014	Roig, 2013
Comprehensive literature search performed.	Yes	Yes	Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	Yes	Yes	No	No	No	Yes
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	No	No	No	No	No
List of studies (included and excluded) provided.	No	No	No	No	No	No
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	No	No	N/A	N/A	No
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	No	Yes	Yes	Yes
Results depended on study quality, either overall, or in interaction with moderators.	No	Yes	N/A	Yes	No	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	N/A	Yes	Yes	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	Yes	N/A	N/A	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	N/A	N/A	Yes
Individual-level meta- analysis used.	No	No	No	N/A	N/A	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	No	Yes	No	No	No	Yes
Conflict of interest disclosed.	Yes	No	No	Yes	Yes	No

AMSTARExBP: SR/MA	Sexton, 2016	Smith, 2010	Sofi, 2011	Spruit, 2016	Tan, 2016	Wu, 2013
Comprehensive literature search performed.	Yes	Yes	Yes	Yes	Yes	Partially Yes
Duplicate study selection and data extraction performed.	Yes	No	Yes	No	No	No
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	Yes	No	No	Yes	No
List of studies (included and excluded) provided.	No	Yes	No	No	No	No
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	N/A	No	No	No	No	No
Scientific quality (risk of bias) of included studies assessed and documented.	Partially Yes	Partially Yes	No	No	No	No
Results depended on study quality, either overall, or in interaction with moderators.	No	Yes	N/A	N/A	N/A	N/A
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	N/A	N/A	N/A	N/A
Data appropriately synthesized and if applicable, heterogeneity assessed.	N/A	Yes	Yes	Partially Yes	Yes	No
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes	Yes
Individual-level meta- analysis used.	N/A	No	No	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	No	Yes	Yes	Yes	No
Conflict of interest disclosed.	No	No	No	No	No	No

AMSTARExBP: SR/MA	Zheng, 2016a	Zheng, 2016b
Comprehensive literature search performed.	Yes	Yes
Duplicate study selection and data extraction performed.	Yes	Yes
Search strategy clearly described.	Yes	Yes
Relevant grey literature included in review.	Yes	Yes
List of studies (included and excluded) provided.	No	No
Characteristics of included studies provided.	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	N/A
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes
Results depended on study quality, either overall, or in interaction with moderators.	No	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes
Effect size index chosen justified, statistically.	Yes	N/A
Individual-level meta- analysis used.	No	N/A
Practical recommendations clearly addressed.	Yes	No
Likelihood of publication bias assessed.	Yes	No
Conflict of interest disclosed.	Yes	No

Appendices

Appendix A: Analytical Framework

<u>Topic Area</u>

Brain Health

Systematic Review Question

What is the relationship between physical activity and cognition?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?
- c. Does the relationship exist across the lifespan?
- d. Does the relationship vary for individuals with normal to impaired cognitive function (i.e., dementia)?
- e. What is the relationship between physical activity and brain structure and function?

Population

People of all ages

Exposure

All types and intensities of physical activity, including free-living activities, play, physical fitness, and sedentary behavior

Comparison

People who participate in varying levels of physical activity

Key Definitions

 Cognition: The set of mental processes that contribute to perception, memory, intellect, and action. Cognitive function can be assessed using a variety of techniques including paper-pencil based tests, neuropsychological testing, and computerized testing methods. Cognitive functions are largely divided into different domains that capture both the type of process as well as the brain areas and circuits that support those functions. Working memory, visual attention, and long-term memory are all examples of different cognitive domains that are thought to be dependent on overlapping but yet largely separate neural systems.

Endpoint Health Outcomes

- Attentional control
- Academic achievement
- Brain health and biomarkers of brain health (white matter, gray matter)
- Brain structure
- Brain function
- Cognition
- Cognitive ability
- Cognitive control
- Cognitive function
- Cognitive functioning
- Cognitive health
- Cognitive performance
- Cognitive processing
- Executive control
- Executive function
- Executive functioning
- Executive functions
- Information processing
- Inhibitory control
- Memory
- Mental flexibility
- Mental recall
- Neuro cognitive
- Neurocognitive
- Perceptual processing
- Problem solving
- Scholastic achievement
- Scholastic performance

Appendix B: Final Search Strategy

Search Strategy: PubMed (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: PubMed; Date of Search: 12/13/2016; 294 results

Set	Search Terms
Limit: Language	(English[lang])
Limit: Exclude animal only	NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))
Limit: Publication Date (Systematic Review/Meta- Analysis)	AND ("2000/01/01"[PDAT] : "3000/12/31"[PDAT])
Limit: Publication Type Include (Systematic Review/Meta-Analysis)	AND (systematic[sb] OR meta-analysis[pt] OR "systematic review"[tiab] OR "systematic literature review"[tiab] OR metaanalysis[tiab] OR "meta analysis"[tiab] OR metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled analysis"[tiab] OR "pooled analyses"[tiab] OR "pooled data"[tiab])
Limit: Publication Type Exclude (Systematic Review/Meta-Analysis)	NOT ("comment"[Publication Type] OR "editorial"[Publication Type])
Cognition	AND (("Academic achievement"[tiab] OR "Academic performance"[tiab] OR "Attentional control"[tiab] OR "Brain health"[tiab] OR "Brain function"[tiab] OR "Cognitive ability"[tiab] OR "Cognitive control"[tiab] OR "Cognitive function"[tiab] OR "Cognitive functioning"[tiab] OR "Cognitive health"[tiab] OR "Cognitive performance"[tiab] OR "Cognitive processing"[tiab] OR "Executive control"[tiab] OR "Executive function"[mh] OR "Information processing"[tiab] OR "Inhibitory control"[tiab] OR "Memory"[mh] OR "Mental flexibility"[tiab] OR "Mental recall"[tiab] OR "Neuro cognitive"[tiab] OR "Neurocognitive"[tiab] OR "Perceptual processing"[tiab] OR "Problem solving"[mh] OR "Problem solving"[tiab] OR "Scholastic achievement"[tiab] OR "Scholastic performance"[tiab]) OR (("Executive function"[tiab] OR "Executive functioning"[tiab] OR "Executive functions"[tiab] OR "Memory"[tiab]) NOT medline[sb]))
Physical Activity	AND (("Exercise"[mh] OR "Exercise"[tiab] OR "Functional Fitness"[tiab] OR "Physical activity"[tiab] OR "Physical fitness"[mh] OR ("Recess" AND ("Child" OR "Youth")) OR "Physical education and Training"[mh] OR Sedentary lifestyle[mh]) OR (("Aerobic activities"[tiab] OR "Aerobic activity"[tiab] OR "Cardiorespiratory fitness"[tiab] OR "Cardiovascular activities"[tiab] OR "Cardiovascular activity"[tiab] OR "Cardiovascular fitness"[tiab] OR "Endurance activities"[tiab] OR "Endurance activity"[tiab] OR "Physical conditioning"[tiab] OR "Physical fitness"[tiab] OR "Resistance training"[tiab] OR "Sedentary"[tiab] OR training"[tiab] OR "Physical education"[tiab] OR "Sedentary"[tiab] OR "walking"[tiab]) NOT medline[sb]))

Search Strategy: CINAHL (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

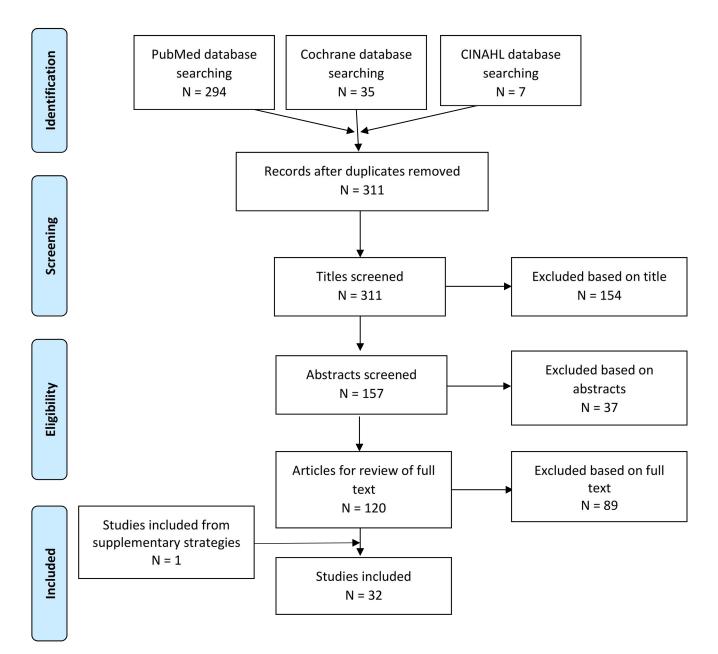
Database: CINAHL; Date of Search: 12/22/16; 7 results Terms searched in title or abstract

Set	Search Terms
Cognition	("Academic achievement" OR "Academic performance" OR "Attentional control" OR "Brain health" OR "Brain function" OR "Cognitive ability" OR "Cognitive control" OR "Cognitive function" OR "Cognitive functioning" OR "Cognitive health" OR "Cognitive performance" OR "Cognitive processing" OR "Executive control" OR "Executive function" OR "Executive functioning" OR "Executive functions" OR "Information processing" OR "Inhibitory control" OR "Memory" OR "Mental flexibility" OR "Mental recall" OR "Neuro cognitive" OR "Neurocognitive" OR "Perceptual processing" OR "Problem solving" OR "Scholastic achievement" OR "Scholastic performance")
Physical Activity	AND ("Aerobic activities" OR "Aerobic activity" OR "Cardiorespiratory fitness" OR "Cardiovascular activities" OR "Cardiovascular activity" OR "Cardiovascular fitness" OR "Endurance activities" OR "Endurance activity" OR "Exercise" OR "Functional Fitness" OR "Physical activity" OR "Physical conditioning" OR "Physical fitness" OR "Resistance training" OR "strength training" OR (Recess AND (Child OR Youth)) OR "Physical education" OR "Sedentary" OR "walking")
Limit: Publication Type Include (Systematic Review/Meta- Analysis)	AND ("systematic review" OR "systematic literature review" OR "metaanalysis" OR "meta analysis" OR metanalyses OR "meta analyses" OR "pooled analysis" OR "pooled analyses" OR "pooled data")
Limits	2000-present English language Peer reviewed Exclude Medline records Human

Search Strategy: Cochrane (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: Cochrane; Date of Search: 12/22/16; 35 results

Terms searched in title, abstract, or keywords


Set	Search Terms
Cognition	("Academic achievement" OR "Academic performance" OR "Attentional control" OR "Brain health" OR "Brain function" OR "Cognitive ability" OR "Cognitive control" OR "Cognitive function" OR "Cognitive functioning" OR "Cognitive health" OR "Cognitive performance" OR "Cognitive processing" OR "Executive control" OR "Executive function" OR "Executive functioning" OR "Executive functions" OR "Information processing" OR "Inhibitory control" OR "Memory" OR "Mental flexibility" OR "Mental recall" OR "Neuro cognitive" OR "Neurocognitive" OR "Perceptual processing" OR "Problem solving" OR "Scholastic achievement" OR "Scholastic performance")
Physical Activity	AND ("Aerobic activities" OR "Aerobic activity" OR "Cardiorespiratory fitness" OR "Cardiovascular activities" OR "Cardiovascular activity" OR "Cardiovascular fitness" OR "Endurance activities" OR "Endurance activity" OR "Exercise" OR "Functional Fitness" OR "Physical activity" OR "Physical conditioning" OR "Physical fitness" OR "Resistance training" OR "strength training" OR (Recess AND (Child OR Youth)) OR "Physical education" OR "Sedentary" OR "walking")
Limits	2000-present Word variations not searched Cochrane Reviews (Reviews) and Other Reviews

Supplementary Strategies

At full text review members of the Physical Activity Guidelines Brain Health Subcommittee identified one relevant article²³ that was not captured by the search strategies.

Appendix C: Literature Tree

Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports Literature Tree

Appendix D: Inclusion/Exclusion Criteria

Brain Health Subcommittee

Q1: What is the relationship between physical activity and cognition?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?
- c. Does the relationship exist across the lifespan?
- d. Does the relationship vary for individuals with normal to impaired cognitive function (i.e., dementia)?
- e. What is the relationship between physical activity and brain structure and function?

Category	Inclusion/Exclusion Criteria	Notes/Rationale
Publication	Include:	
Language	Studies published with full text in English	
Publication Status	Include:	
	 Studies published in peer-reviewed journals 	
	• Reports determined to have appropriate suitability	
	and quality by PAGAC	
	Exclude:	
	 Grey literature, including unpublished data, 	
	manuscripts, abstracts, conference proceedings	
Research Type	Include:	
	 Original research 	
	Meta-analyses	
	Systematic reviews	
	Pooled analysis	
	Reports determined to have appropriate suitability	
	and quality by PAGAC	
Study Subjects	Include:	
	Human subjects	
Age of Study	Include:	
Subjects	People of all ages	
Health Status of	Include:	
Study Subjects	Healthy people	
	 People with chronic conditions 	
	 People with cognitive impairment 	
	Exclude:	
	 Hospitalized patients only 	
	Athletes only	
Comparison	Exclude:	
	 Studies comparing athlete types (e.g., comparing 	
	runners to soccer players)	

Date of	Include:	
Publication	 Original research published since 2000 	
	 Systematic reviews, meta-analyses, and reports 	
	published since 2000	
Study Design	Include:	
	 Randomized controlled trials 	
	 Non-randomized controlled trials 	
	 Prospective cohort studies 	
	 Retrospective cohort studies 	
	 Case-control studies 	
	 Cross-sectional studies 	
	 Before-and-after studies 	
	• Time series studies	
	 Systematic reviews 	
	 Meta-analyses 	
	 Pooled analysis 	
	• Report	
	Exclude:	
	Narrative reviews	
	Commentaries	
	Editorials	
Intervention/	Include studies in which the exposure or	
Exposure	intervention is:	
Exposure	All types and intensities of physical activity,	
	including:	
	• Free-living activities	
	• Play	
	• Single, acute bouts of exercise	
	Physical inactivity	
	Physical fitness	
	Sedentary behavior	
	Exclude:	
	 Studies that do not include physical activity 	
	 Studies of a specific therapeutic exercise delivered 	
	by a medical professional (e.g., physical therapist)	
	 Studies of multimodal interventions that do not 	
	present data on physical activity alone	
	 Studies where physical activity is only used as a 	
	confounding variable	
Outcome	Include studies in which the outcome is:	
	Attentional control	
	Brain health	
	Brain function	
	Cognitive ability	

Cognitive control
Cognitive function
Cognitive functioning
• Cognitive health
Cognitive performance
Cognitive processing
• Executive control
Executive function
• Executive functioning
Executive functions
Information processing
Inhibitory control
Memory
Mental flexibility
Mental recall
Neuro cognitive
Neurocognitive
Perceptual processing
Problem solving Scholastic ashievement
Scholastic achievement Scholastic performance
Scholastic performance

Appendix E: Rationale for Exclusion at Abstract or Full-Text Triage for Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Ahlskog JE, Geda YE, Graff-Radford NR,						
Petersen RC. Physical exercise as a						
preventive or disease-modifying treatment					Х	
of dementia and brain aging. <i>Mayo Clin Proc.</i>					X	
2011;86(9):876-884.						
Ahn S, Fedewa AL. A meta-analysis of the						
relationship between children's physical						
activity and mental health. J Pediatr Psychol.	Х					
2011;36(4):385-397.	Λ					
doi:10.1093/jpepsy/jsq107.						
Angevaren M, Aufdemkampe G, Verhaar HJ,			-			
Aleman A, Vanhees L. Physical activity and						
enhanced fitness to improve cognitive						
function in older people without known					х	
cognitive impairment. Cochrane Database					Λ	
<i>Syst Rev.</i> 2008;(3):Cd005381.						
doi:10.1002/14651858.CD005381.pub3.						
Beydoun MA, Beydoun HA, Gamaldo AA,						
Teel A, Zonderman AB, Wang Y.						
Epidemiologic studies of modifiable factors						
associated with cognition and dementia:					х	
Systematic review and meta-analysis. BMC					^	
Public Health. 2014;14:643.						
doi:10.1186/1471-2458-14-643.						
Bradley BJ, Greene AC. Do health and						
education agencies in the United States						
share responsibility for academic						
achievement and health? A review of 25						
years of evidence about the relationship of			х			
adolescents' academic achievement and			~			
health behaviors.						
J Adolesc Health. 2013;52(5):523-532.						
doi:10.1016/j.jadohealth.2013.01.008.						
Cai Y, Abrahamson K. How exercise						
influences cognitive performance when mild						
cognitive impairment exists: a literature						
review. J Psychosoc Nurs Ment Health Serv.					Х	
2016;54(1):25-35. doi:10.3928/02793695-						
20151109-03.						
Cai Y, Abrahamson K. Does exercise impact	<u> </u>					
cognitive performance in community-						
dwelling older adults with mild cognitive					х	
impairment? A systematic review. <i>Quality in</i>					~	
Primary Care. 2015;23(4):214-222.						
Carson V, Hunter S, Kuzik N, et al. Systematic						
review of sedentary behaviour and health						
indicators in school-aged children and	Х					
youth: an update. Appl Physiol Nutr Metab.						
youth. an update. Appl Fllysiol Nutl Weldb.						

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
2016;41(6 Suppl 3):S240-S265.						
doi:10.1139/apnm-2015-0630.						
Carvalho A, Rea IM, Parimon T, Cusack BJ.						
Physical activity and cognitive function in						
individuals over 60 years of age: a					Х	
systematic review. Clin Interv Aging.						
2014;9:661-682. doi:10.2147/CIA.S55520.						
Castelli DM, Centeio EE, Hwang J, et al. VII.						
The history of physical activity and academic						
performance research: Informing the future.					Х	
Monogr Soc Res Child Dev. 2014;79(4):119-						
148. doi:10.1111/mono.12133.						
Caviola L, Faber NS. Pills or push-ups?						
Effectiveness and public perception of						
pharmacological and non-pharmacological			х			
cognitive enhancement. Front Psychol.						
2015;6:1852.						
doi:10.3389/fpsyg.2015.01852.						
Chan RJ, McCarthy AL, Devenish J, Sullivan						
KA, Chan A. Systematic review of						
pharmacologic and non-pharmacologic						
interventions to manage cognitive						Х
alterations after chemotherapy for breast						
cancer. <i>Eur J Cancer</i> . 2015;51(4):437-450.						
doi:10.1016/j.ejca.2014.12.017.						
Chang YK, Pan CY, Chen FT, Tsai CL, Huang						
CC. Effect of resistance-exercise training on			v			
cognitive function in healthy older adults: a			Х			
review. J Aging Phys Act. 2012;20(4):497-						
517. Cliff DP, Hesketh KD, Vella SA, et al.	-	-				
Objectively measured sedentary behaviour						
and health and development in children and						
adolescents: systematic review and meta-	Х					
analysis. <i>Obes Rev.</i> 2016;17(4):330-344.						
doi:10.1111/obr.12371.						
Clouston SA, Brewster P, Kuh D, et al. The						
dynamic relationship between physical						
function and cognition in longitudinal aging				х		
cohorts. <i>Epidemiol Rev.</i> 2013;35:33-50.				~		
doi:10.1093/epirev/mxs004.						
Coelho FG, Santos-Galduroz RF, Gobbi S,						
Stella F. Systematized physical activity and						
cognitive performance in elderly with						х
Alzheimer's dementia: a systematic review.						
<i>Rev Bras Psiquiatr.</i> 2009;31(2):163-170.						
Conn VS, Minor MA, Burks KJ, Rantz MJ,						1
Pomeroy SH. Integrative review of physical						
activity intervention research with aging	Х					
adults. J Am Geriatr Soc. 2003;51(8):1159-						
1168.						
Cox EP, O'Dwyer N, Cook R, et al.						1
Relationship between physical activity and						
cognitive function in apparently healthy					Х	
young to middle-aged adults: a systematic						

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
review. J Sci Med Sport. 2016;19(8):616-628.						
doi:10.1016/j.jsams.2015.09.003.						
Cramer H, Lauche R, Azizi H, Dobos G,						
Langhorst J. Yoga for multiple sclerosis: a						
systematic review and meta-analysis. PLoS	х					
One. 2014;9(11):e112414.						
https://doi.org/10.1371/journal.pone.01124						
14.						
Cramer H, Lauche R, Klose P, Langhorst J,						
Dobos G. Yoga for schizophrenia: a					v	
systematic review and meta-analysis. BMC					Х	
<i>Psychiatry</i> . 2013;13:32. doi:10.1186/1471-						
244X-13-32. Cumming TB, Tyedin K, Churilov L, Morris		-				
ME, Bernhardt J. The effect of physical						
activity on cognitive function after stroke: a					х	
systematic review. Int Psychogeriatr.					^	
2012;24(4):557-567.						
Cvejic E, Lloyd AR, Vollmer-Conna U.						
Neurocognitive improvements after best-						
practice intervention for chronic fatigue						
syndrome: preliminary evidence of						
divergence between objective indices and						Х
subjective perceptions. <i>Compr Psychiatry</i> .						
2016;66:166-175. doi:						
10.1016/j.comppsych.2016.02.002.						
Dale H, Brassington L, King K. The impact of						
healthy lifestyle interventions on mental						
health and wellbeing: a systematic review.	х					
Mental Health Review Journal. 2014;19(1):1-	^					
26. https://doi.org/10.1108/MHRJ-05-2013-						
0016.						
Dauwan M, Begemann MJ, Heringa SM,						
Sommer IE. Exercise improves clinical						
symptoms, quality of life, global functioning,						
and depression in schizophrenia: a					Х	
systematic review and meta-analysis.						
Schizophr Bull. 2016;42(3):588-599.						
doi:10.1093/schbul/sbv164. Daviglus ML, Bell CC, Berrettini W, et al. NIH						
state-of-the-science conference statement:						
Preventing Alzheimer's disease and			х			
cognitive decline. <i>NIH Consens State Sci</i>			~			
Statements. 2010;27(4):1-30.						
Denkinger MD, Nikolaus T, Denkinger C,						
Lukas A. Physical activity for the prevention						
of cognitive decline: current evidence from						
observational and controlled studies. Z			Х			
<i>Gerontol Geriatr.</i> 2012;45(1):11-16.						
doi:10.1007/s00391-011-0262-6.						
de Rezende LFMd, Rodrigues Lopes M, Rey-						
López JP, Matsudo VKR, Luiz Odc. Sedentary						
behavior and health outcomes: An overview			Х			
of systematic reviews. PLoS One.						
2014;9(8):e105620.						

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Desai R, Tailor A, Bhatt T. Effects of yoga on brain waves and structural activation: A review. <i>Complement Ther Clin Pract.</i> 2015;21(2):112-118. doi:10.1016/j.ctcp.2015.02.002.			х			
Devine JM, Zafonte RD. Physical exercise and cognitive recovery in acquired brain injury: a review of the literature. <i>PM R.</i> 2009;1(6):560-575. doi:10.1016/j.pmrj.2009.03.015.			х			
Etgen T, Sander D, Bickel H, Förstl H. Mild cognitive impairment and dementia: the importance of modifiable risk factors. <i>Dtsch</i> <i>Arztebl Int</i> . 2011;108(44):743-750. doi:10.3238/arztebl.2011.0743.			х			
Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. <i>Int Psychogeriatr.</i> 2014;26(1):9-18. doi:10.1017/S1041610213001385.					х	
Fedewa AL, Ahn S. The effects of physical activity and physical fitness on children's achievement and cognitive outcomes: a meta-analysis. <i>Res Q Exerc Sport</i> . 2011;82(3):521-535.	x					
Forbes D, Forbes SC, Blake CM, Thiessen EJ, Forbes S. Exercise programs for people with dementia. <i>Cochrane Database Syst Rev.</i> 2015;(4):Cd006489. doi:10.1002/14651858.CD006489.pub4.					х	
Forbes D, Thiessen EJ, Blake CM, Forbes SC, Forbes S. Exercise programs for people with dementia. <i>Cochrane Database Syst Rev.</i> 2013;(12):Cd006489. doi:10.1002/14651858.CD006489.pub3.						x
Garcia JA, Schoene D, Lord SR, Delbaere K, Valenzuela T, Navarro KF. A bespoke kinect stepping exergame for improving physical and cognitive function in older people: A pilot study. <i>Games Health J.</i> 2016;5(6):382- 388.	x					
Garcia-Soto E, Lopez de Munain Ml, Santibanez M. Effects of combined aerobic and resistance training on cognition following stroke: a systematic review . Database of Abstracts of Reviews of Effects. 2013;(2):535-541.					x	
Gates N, Fiatarone Singh MA, Sachdev PS, Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. <i>Am J Geriatr</i> <i>Psychiatry</i> . 2013;21(11):1086-1097. doi:10.1016/j.jagp.2013.02.018.					x	

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Grassmann V, Alves MV, Santos-Galduróz						
RF, Galduróz JC. Possible cognitive benefits						
of acute physical exercise in children with					х	
ADHD: a systematic review. J Atten Disord.					^	
2014;21(5):367-371.						
doi:10.1177/1087054714526041.						
Gregory MA, Gill DP, Petrella RJ. Brain health						
and exercise in older adults. Curr Sports Med			х			
Rep. 2013;12(4):256-271.			~			
doi:10.1249/JSR.0b013e31829a74fd.						
Hartanto TA, Krafft CE, Iosif AM, Schweitzer						
JB. A trial-by-trial analysis reveals more						
intense physical activity is associated with						
better cognitive control performance in						Х
attention-deficit/hyperactivity disorder.						
Child Neuropsychol. 2016;22(5):618-626.						
doi: 10.1080/09297049.2015.1044511.						
Hasan SM, Rancourt SN, Austin MW,						
Ploughman M. Defining optimal aerobic						
exercise parameters to affect complex						
motor and cognitive outcomes after stroke:		Х				
a systematic review and synthesis. Neural						
Plast. 2016;(2016):2961573.						
http://dx.doi.org/10.1155/2016/2961573.						
Henneghan A. Modifiable factors and						
cognitive dysfunction in breast cancer						
survivors: a mixed-method systematic				х		
review. Support Care Cancer.				~		
2016;24(1):481-497. doi:10.1007/s00520-						
015-2927-у.						
Hernández SS, Sandreschi PF, da Silva FC, et						
al. What are the benefits of exercise for						
Alzheimer's disease? A systematic review of					х	
the past 10 years. J Aging Phys Act.						
2015;23(4):659-668. doi:10.1123/japa.2014-						
0180.						
Heyn P, Abreu BC, Ottenbacher KJ. The						
effects of exercise training on elderly						
persons with cognitive impairment and						Х
dementia: a meta-analysis. Arch Phys Med						
Rehabil. 2004;85(10):1694-1704.						
Heyn PC, Johnson KE, Kramer AF. Endurance						
and strength training outcomes on						
cognitively impaired and cognitively intact	Х					Х
older adults: a meta-analysis. J Nutr Health						
Aging. 2008;12(6):401-409.						
Hildebrand MW. Effectiveness of						
interventions for adults with psychological						
or emotional impairment after stroke: an				х		
evidence-based review. Am J Occup Ther.						
2015;69(1):6901180050p1-9.						
doi:10.5014/ajot.2015.012054.	l					
Hindle JV, Petrelli A, Clare L, Kalbe E.						
Nonpharmacological enhancement of						Х
cognitive function in Parkinson's disease: a						

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
systematic review. <i>Mov Disord.</i> 2013;28(8):1034-1049. doi:10.1002/mds.25377.						
Hopkins ME, Davis FC, VanTieghem MR, Whalen PJ, Bucci DJ. Differential effects of acute and regular physical exercise on cognition and affect. <i>Neuroscience</i> . 2012;215:59-68. doi:10.1016/j.neuroscience.2012.04.056.						х
Huang T, Larsen KT, Ried-Larsen M, Moller NC, Andersen LB. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: a review. <i>Scand J Med Sci Sports</i> . 2014;24(1):1-10. doi:10.1111/sms.12069.			Х			
Hwang PW, Braun KL. The effectiveness of dance interventions to improve older adults' health: a systematic literature review. <i>Altern Ther Health Med.</i> 2015;21(5):64-70.	x					
Inskip M, Mavros Y, Sachdev PS, Fiatarone Singh MA. Exercise for individuals with Lewy Body Dementia: a systematic review. <i>PLoS</i> <i>One.</i> 2016;11(6):e0156520. doi:https://doi.org/10.1371/journal.pone.01 56520.	х					
Jackson WM, Davis N, Sands SA, Whittington RA, Sun LS. Physical activity and cognitive development: a meta-analysis. <i>J Neurosurg</i> <i>Anesthesiol.</i> 2016;28(4):373-380.					х	
Jedrziewski MK, Lee VM, Trojanowski JQ. Physical activity and cognitive health. <i>Alzheimers Dement</i> . 2007;3(2):98-108. doi:10.1016/j.jalz.2007.01.009.			х			
Kalron A, Zeilig G. Efficacy of exercise intervention programs on cognition in people suffering from multiple sclerosis, stroke and Parkinson's disease: a systematic review and meta-analysis of current evidence. <i>NeuroRehabilitation</i> . 2015;37(2):273-289. doi:10.3233/NRE- 151260.					Х	
Kaltsatou A, Grigoriou SS, Karatzaferi C, Giannaki CD, Stefanidis I, Sakkas GK. Cognitive function and exercise training for chronic renal disease patients: a literature review. <i>J Bodyw Mov Ther</i> . 2015;19(3):509- 515. doi:10.1016/j.jbmt.2015.04.006.		x				
Karr JE, Areshenkoff CN, Rast P, Garcia- Barrera MA. An empirical comparison of the therapeutic benefits of physical exercise and cognitive training on the executive functions of older adults: a meta-analysis of controlled trials. <i>Neuropsychology</i> . 2014;28(6):829-845. doi:10.1037/neu0000101.					Х	

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Knols RH, Vanderhenst T, Verra ML, de Bruin ED. Exergames for patients in acute care settings: systematic review of the reporting of methodological quality, FITT components, and program intervention details. <i>Games</i> <i>Health J.</i> 2016;5(3):224-235. doi:10.1089/g4h.2015.0067.	x					
Kraft E. Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. <i>Neuropsychol Dev Cogn B Aging</i> <i>Neuropsychol Cogn.</i> 2012;19(1-2):248-263. doi:10.1080/13825585.2011.645010.			х			
Kramer AF, Colcombe SJ, McAuley E, et al. Enhancing brain and cognitive function of older adults through fitness training. <i>J Mol</i> <i>Neurosci.</i> 2003;20(3):213-221.					Х	
Kramer AF, Erickson KI. Effects of physical activity on cognition, well-being, and brain: human interventions. <i>Alzheimers Dement</i> . 2007;3(2 Suppl):S45-S51. doi:10.1016/j.jalz.2007.01.008.	х					
Langford R, Bonell CP, Jones HE, et al. The WHO Health Promoting School framework for improving the health and well-being of students and their academic achievement. <i>Cochrane Database Syst Rev.</i>	Х					
2014;(4):Cd008958. doi:10.1002/14651858.CD008958.pub2. Lauenroth A, Ioannidis AE, Teichmann B. Influence of combined physical and						
cognitive training on cognition: a systematic review. <i>BMC Geriatr.</i> 2016;16:141. doi:10.1186/s12877-016-0315-1. Lautenschlager NT, Almeida OP. Physical				х		
activity and cognition in old age. <i>Curr Opin</i> <i>Psychiatry</i> . 2006;19(2):190-193. Lee HS, Park SW, Park YJ. Effects of physical activity programs on the improvement of			х			
dementia symptom: a meta-analysis. Biomed Res Int. 2016;2016:2920146. doi:http://dx.doi.org/10.1155/2016/292014 6.					х	
Lee Y, Back JH, Kim J, et al. Systematic review of health behavioral risks and cognitive health in older adults. <i>Int Psychogeriatr.</i> 2010;22(2):174-187. doi:10.1017/S1041610209991189.					х	
Lees C, Hopkins J. Effect of aerobic exercise on cognition, academic achievement, and psychosocial function in children: a systematic review of randomized control trials. <i>Prev Chronic Dis.</i> 2013;10:E174. doi:10.5888/pcd10.130010.					х	

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Lehert P, Villaseca P, Hogervorst E, Maki PM,						
Henderson VW. Individually modifiable risk						
factors to ameliorate cognitive aging: a				х		
systematic review and meta-analysis.				^		
Climacteric. 2015;18(5):678-689.						
doi:10.3109/13697137.2015.1078106.						
Lista I, Sorrentino G. Biological mechanisms						
of physical activity in preventing cognitive			х			
decline. Cell Mol Neurobiol. 2010;30(4):493-			^			
503. doi:10.1007/s10571-009-9488-x.						
Liu S, Lebeau JC, Tenenbaum JC, G. Does						
exercise improve cognitive performance? A						
conservative message from Lord's paradox.	х					
Front Psychol. 2016;7:1092.						
doi:10.3389/fpsyg.2016.01092.						
Lövdén M, Xu W, Wang HX. Lifestyle change						
and the prevention of cognitive decline and						
dementia: what is the evidence?. Curr Opin			Х			
Psychiatry. 2013;26(3):239-243.						
doi:10.1097/YCO.0b013e32835f4135.						
Luijpen MW, Scherder EJ, Van Someren EJ,						
Swaab DF, Sergeant JA. Non-						
pharmacological interventions in cognitively						
impaired and demented patients—a			Х			
comparison with cholinesterase inhibitors.						
<i>Rev Neurosci.</i> 2003;14(4):343-368.						
Makizako H, Liu-Ambrose T, Shimada H, et						
al. Moderate-intensity physical activity,						
hippocampal volume, and memory in older						
adults with mild cognitive impairment. J						Х
Gerontol A Biol Sci Med Sci. 2015;70(4):480-						
486. doi:10.1093/gerona/glu136.						
Martin A, Saunders DH, Shenkin SD, Sproule						
J. Lifestyle intervention for improving school						
achievement in overweight or obese						
children and adolescents. <i>Cochrane</i>					Х	
Database Syst Rev. 2014;(3):Cd009728.						
doi:10.1002/14651858.CD009728.pub2.						
McClam TD, Marano CM, Rosenberg PB,						
Lyketsos CG. Interventions for						
neuropsychiatric symptoms in						
neurocognitive impairment due to						
Alzheimer's disease: A review of the				Х		
literature. Harv Rev Psychiatry.						
2015;23(5):377-393.						
doi:10.1097/HRP.0000000000000097.						
McDonnell MN, Smith AE, Mackintosh SF.		<u> </u>				
Aerobic exercise to improve cognitive						
function in adults with neurological						
6						Х
disorders: a systematic review. Arch Phys						
<i>Med Rehabil.</i> 2011;92(7):1044-1052.						
doi:10.1016/j.apmr.2011.01.021.						
McMorris T, Sproule J, Turner A, Hale BJ.	V					
Acute, intermediate intensity exercise, and	Х					
speed and accuracy in working memory]		

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
tasks: a meta-analytical comparison of effects. <i>Physiol Behav.</i> 2011;102(3-4):421-8. doi:10.1016/j.physbeh.2010.12.007.						
Michael SL, Merlo CL, Basch CE, Wentzel KR, Wechsler H. Critical connections: health and academics. <i>J Sch Health</i> . 2015;85(11):740- 758. doi:10.1111/josh.12309.			х			
Minges KE, Chao AM, Irwin ML, et al. Classroom standing desks and sedentary behavior: a systematic review. <i>Pediatrics</i> . 2016;137(2):e20153087. doi:10.1542/peds.2015-3087.	х					
Morgan GS, Gallacher J, Bayer A, Fish M, Ebrahim S, Ben-Shlomo Y. Physical activity in middle-age and dementia in later life: findings from a prospective cohort of men in Caerphilly, South Wales and a meta-analysis. <i>J Alzheimers Dis.</i> 2012;31(3):569-580. doi:10.3233/JAD-2012-112171.						x
Morris T, Gomes Osman J, Tormos Muñoz JM, Costa Miserachs D, Pascual Leone A. The role of physical exercise in cognitive recovery after traumatic brain injury: a systematic review. <i>Restor Neurol Neurosci.</i> 2016;34(6):977-988.	х					
Motl RW, Sandroff BM, Benedict RH. Cognitive dysfunction and multiple sclerosis: developing a rationale for considering the efficacy of exercise training. <i>Mult Scler</i> . 2011;17(9):1034-1040. doi:10.1177/1352458511409612.			х			
Mura G, Vellante M, Nardi AE, Machado S, Carta MG. Effects of school-based physical activity interventions on cognition and academic achievement: A systematic review. <i>CNS Neurol Disord Drug Targets</i> . 2015;14(9):1194-1208.					х	
Murray NG, Low BJ, Hollis C, Cross AW, Davis SM. Coordinated school health programs and academic achievement: a systematic review of the literature. <i>J Sch Health</i> . 2007;77(9):589-600.					x	
Myers JS. Factors associated with changing cognitive function in older adults: implications for nursing rehabilitation. <i>Rehabil Nurs.</i> 2008;33(3):117-123; discussion 132.			х			
Nanda B, Balde J, Manjunatha S. The acute effects of a single bout of moderate- intensity aerobic exercise on cognitive functions in healthy adult males. <i>J Clin Diagn</i> <i>Res.</i> 2013;7(9):1883-1885. doi:10.7860/JCDR/2013/5855.3341.						x
Neilson HK, Ullman R, Robson PJ, Friedenreich CM, Csizmadi I. Cognitive	Х			х		

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
testing of the STAR-Q: insights in activity and sedentary time reporting. <i>J Phys Act Health</i> . 2013;10(3):379-389.						
Ogawa EF, You T, Leveille SG. Potential benefits of exergaming for cognition and dual-task function in older adults: a systematic review. <i>J Aging Phys Act.</i> 2016;24(2):332-336. doi:10.1123/japa.2014- 0267.					х	
Oh, Kim PJ, J. The Effects of Nonpharmacologic Interventions on Cognitive Function in Patients With Cancer: A Meta-Analysis. Oncol Nurs Forum. 2016. 43(5):E205-17				x		
Öhman H, Savikko N, Strandberg TE, Pitkälä KH. Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: a systematic review. <i>Dement Geriatr Cogn</i> <i>Disord</i> . 2014;38(5-6):347-365. doi:10.1159/000365388.					х	
Packer N, Pervaiz N, Hoffman-Goetz L. Does exercise protect from cognitive decline by altering brain cytokine and apoptotic protein levels? A systematic review of the literature. <i>Exerc Immunol Rev.</i> 2010;16:138-162.	х					
Plassman BL, Williams JW Jr, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. <i>Ann Intern Med.</i> 2010;153(3):182-193. doi:10.7326/0003-4819-153-3-201008030- 00258.				х		
Ploughman M. Exercise is brain food: the effects of physical activity on cognitive function. <i>Dev Neurorehabil</i> . 2008;11(3):236- 240. doi:10.1080/17518420801997007.			х			
Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. <i>Appl Physiol Nutr</i> <i>Metab.</i> 2016;41(6 Suppl 3):S197-S239. doi:10.1139/apnm-2015-0663.					Х	
Rasberry CN, Lee SM, Robin L, et al. The association between school-based physical activity, including physical education, and academic performance: a systematic review of the literature. <i>Prev Med.</i> 2011;52 Suppl 1:S10-S20.					Х	
Rolland Y, Abellan van Kan G, Vellas B. Physical activity and Alzheimer's disease: from prevention to therapeutic perspectives. <i>J Am Med Dir Assoc.</i>			х			

2008;9(6):390-405.doi:10.1016/j.jamda.2008.02.007.Santana C, Azevedo LB, Cattuzzo MT, Hill JO, Andrade LP, Prado WL. Physical fitness and academic performance in youth: a systematic review. Scand J Med Sci Sports. 2016. doi:10.1111/sms.12773Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of physical exercise combined with nutritional supplements on aging brain			X	
Santana C, Azevedo LB, Cattuzzo MT, Hill JO, Andrade LP, Prado WL. Physical fitness and academic performance in youth: a systematic review. <i>Scand J Med Sci Sports.</i> 2016. doi:10.1111/sms.12773 Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of physical exercise combined with nutritional supplements on aging brain			x	
Andrade LP, Prado WL. Physical fitness and academic performance in youth: a systematic review. <i>Scand J Med Sci Sports</i> . 2016. doi:10.1111/sms.12773 Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of physical exercise combined with nutritional supplements on aging brain			х	
academic performance in youth: a systematic review. Scand J Med Sci Sports. 2016. doi:10.1111/sms.12773 Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of physical exercise combined with nutritional supplements on aging brain			х	
systematic review. Scand J Med Sci Sports. 2016. doi:10.1111/sms.12773 Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of physical exercise combined with nutritional supplements on aging brain			Х	
2016. doi:10.1111/sms.12773 Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of physical exercise combined with nutritional supplements on aging brain			1	1
Schättin A, Baur K, Stutz J, Wolf P, de Bruin ED. Effects of physical exercise combined with nutritional supplements on aging brain			1	
ED. Effects of physical exercise combined with nutritional supplements on aging brain			 	
with nutritional supplements on aging brain				
related structures and functions: a		Х		
systematic review. Front Aging Neurosci.				
2016;8:161. doi:10.3389/fnagi.2016.00161.				
Scherder E, Scherder R, Verburgh L, et al.				
Executive functions of sedentary elderly may				
benefit from walking: a systematic review			х	
and meta-analysis. Am J Geriatr Psychiatry.			~	
2014;22(8):782-791.				
doi:10.1016/j.jagp.2012.12.026.				
Schlosser Covell GE, Hoffman-Snyder CR,				
Wellik KE, et al. Physical activity level and				
future risk of mild cognitive impairment or				Х
dementia: a critically appraised topic. Neurologist. 2015;19(3):89-91.				
doi:10.1097/NRL.00000000000013.				
Schneider N, Yvon C. A review of				
multidomain interventions to support				
healthy cognitive ageing. J Nutr Health		х		
Aging. 2013;17(3):252-257.				
doi:10.1007/s12603-012-0402-8.				
Sherry AP, Pearson N, Clemes SA. The effects				
of standing desks within the school				
classroom: a systematic review. Prev Med X				
<i>Rep.</i> 2016;3:338-347.				
doi:10.1016/j.pmedr.2016.03.016.				
Sibley BA, Etnier JL. The relationship				
between physical activity and cognition in children: a meta-analysis. <i>Pediatric Exercise</i>				х
<i>Science</i> . 2003;15(3):243-256.				^
doi:10.1515/ijsl.2000.143.183.				
Singh A, Uijtdewilligen L, Twisk JW, van				
Mechelen W, Chinapaw MJ. Physical activity				
and performance at school: a systematic				
review of the literature including a				Х
methodological quality assessment. Arch				
Pediatr Adolesc Med. 2012;166(1):49-55.				
doi:10.1001/archpediatrics.2011.716.				
Smith GE. Healthy cognitive aging and				
dementia prevention. Am Psychol.	Х			
2016;71(4):268-275. doi:10.1037/a0040250.				
Snowden M, Steinman L, Mochan K, et al.				
Effect of exercise on cognitive performance in community-dwelling older adults: review			х	
of intervention trials and recommendations			^	
for public health practice and research. <i>J Am</i>				

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Geriatr Soc. 2011;59(4):704-716.						
doi:10.1111/j.1532-5415.2011.03323.x.						
Solloway MR, Taylor SL, Shekelle PG, et al.						
An evidence map of the effect of Tai Chi on	х					
health outcomes. Syst Rev. 2016;5(1):126.	~					
doi:10.1186/s13643-016-0300-y.						
Stothart CR, Simons DJ, Boot WR, Kramer AF.						
Is the effect of aerobic exercise on cognition						
a placebo effect?. PLoS One.						х
2014;9(10):e109557.						
https://doi.org/10.1371/journal.pone.01095						
57. Ströhle A, Schmidt DK, Schultz F, et al. Drug						
and exercise treatment of alzheimer disease						
and mild cognitive impairment: a systematic						
review and meta-analysis of effects on				х		
cognition in randomized controlled trials.				^		
Am J Geriatr Psychiatry. 2015;23(12):1234-						
1249. doi:10.1016/j.jagp.2015.07.007.						
Tandon PS, Tovar A, Jayasuriya AT, et al. The						
relationship between physical activity and						
diet and young children's cognitive						
development: a systematic review. Prev Med					Х	
Rep. 2016;3:379-390.						
doi:10.1016/j.pmedr.2016.04.003.						
Teixeira CV, Gobbi LT, Corazza DI, Stella F,						
Costa JL, Gobbi S. Non-pharmacological						
interventions on cognitive functions in older						
people with mild cognitive impairment			Х			
(MCI). Arch Gerontol Geriatr.						
2012;54(1):175-180.						
doi:10.1016/j.archger.2011.02.014.						
Treanor CJ, McMenamin UC, O'Neill RF, et						
al. Non-pharmacological interventions for						
cognitive impairment due to systemic cancer				х		
treatment. <i>Cochrane Database Syst Rev.</i>						
2016;(8):Cd011325. doi:10.1002/14651858.CD011325.pub2.						
doi:10.1002/14651858.CD011325.pub2. Tremblay MS, LeBlanc AG, Kho ME, et al.						
Systematic review of sedentary behaviour						
and health indicators in school-aged children					х	
and youth. Int J Behav Nutr Phys Act.					^	
2011;8:98. doi:10.1186/1479-5868-8-98.						
Trudeau F, Shephard RJ. Physical education,						
school physical activity, school sports and						
academic performance. Int J Behav Nutr					х	
<i>Phys Act.</i> 2008;5:10. doi:10.1186/1479-						
5868-5-10.						
Tse AC, Wong TW, Lee PH. Effect of low-						
intensity exercise on physical and cognitive						v
health in older adults: a systematic review.						Х
Sports Med Open. 2015;1(1):37.						
Tseng CN, Gau BS, Lou MF. The effectiveness						
of exercise on improving cognitive function						Х
in older people: a systematic review. J Nurs						

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Res. 2011;19(2):119-131.						
doi:10.1097/JNR.0b013e3182198837.						
van Uffelen JG, Chin A Paw MJ, Hopman-						
Rock M, van Mechelen W. The effects of						
exercise on cognition in older adults with						х
and without cognitive decline: a systematic						
review. Clin J Sport Med. 2008;18(6):486-						
500. doi:10.1097/JSM.0b013e3181845f0b.						
Vancampfort D, Probst M, De Hert M, et al.						
Neurobiological effects of physical exercise						
in schizophrenia: a systematic review.					Х	
Disabil Rehabil. 2014;36(21):1749-1754.						
doi:10.3109/09638288.2013.874505.						
Vanderbeken I, Kerckhofs E. A systematic						
review of the effect of physical exercise on						
cognition in stroke and traumatic brain					Х	
injury patients. NeuroRehabilitation.						
2017;40(1). doi:10.3233/NRE-161388.						
Verburgh L, Königs M, Scherder EJ,						
Oosterlaan J. Physical exercise and executive						
functions in preadolescent children,					х	
adolescents and young adults: a meta-					~	
analysis. Br J Sports Med. 2014;48(12):973-						
979. doi:10.1136/bjsports-2012-091441.						
Vysniauske R, Verburgh L, Oosterlaan J,						
Molendijk ML. The effects of physical						
exercise on functional outcomes in the					Х	
treatment of ADHD: a meta-analysis. J Atten						
Disord. 2016;pii:1087054715627489.						
Wang C, Yu JT, Wang HF, Tan CC, Meng XF,						
Tan L. Non-pharmacological interventions						
for patients with mild cognitive impairment:						
a meta-analysis of randomized controlled					х	
trials of cognition-based and exercise					^	
interventions. J Alzheimers Dis.						
2014;42(2):663-678. doi:10.3233/JAD-						
140660.						
Wang HX, Xu W, Pei JJ. Leisure activities,						
cognition and dementia. Biochim Biophys					х	
Acta. 2012;1822(3):482-491.					^	
doi:10.1016/j.bbadis.2011.09.002.						
Wayne PM, Walsh JN, Taylor-Piliae RE, et al.						
Effect of tai chi on cognitive performance in						
older adults: systematic review and meta-					Х	
analysis. J Am Geriatr Soc. 2014;62(1):25-39.						
doi:10.1111/jgs.12611.						
Woods NF, Mitchell ES, Schnall JG, et al.						
Effects of mind-body therapies on symptom						
clusters during the menopausal transition.				х		
<i>Climacteric.</i> 2014;17(1):10-22.						
doi:10.3109/13697137.2013.828198.						
Young J, Angevaren M, Rusted J, Tabet N.						
Aerobic exercise to improve cognitive					N N	
function in older people without known					Х	
cognitive impairment. Cochrane Database						

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Syst Rev. 2015;(4):Cd005381.						
doi:10.1002/14651858.CD005381.pub4.						
Zhu X, Yin S, Lang M, He R, Li J. The more the						
better? A meta-analysis on effects of						
combined cognitive and physical					х	
intervention on cognition in healthy older					Л	
adults. Ageing Res Rev. 2016;31:67-79.						
https://doi.org/10.1016/j.arr.2016.07.003.						

References

1. Bustamante EE, Williams CF, Davis CL. Physical activity interventions for neurocognitive and academic performance in overweight and obese youth: A systematic review. *Pediatr Clin North Am*. 2016;63(3):459-480. doi:10.1016/j.pcl.2016.02.004.

2. Carson V, Hunter S, Kuzik N, et al. Systematic review of physical activity and cognitive development in early childhood. *J Sci Med Sport*. 2016;19(7):573-578. doi:10.1016/j.jsams.2015.07.011.

3. Den Heijer AE, Groen Y, Tucha L, et al. Sweat it out? The effects of physical exercise on cognition and behavior in children and adults with ADHD: a systematic literature review. *J Neural Transm (Vienna)*. 2017;124(suppl 1):3-26. doi:10.1007/s00702-016-1593-7.

4. Donnelly JE, Hillman CH, Castelli D, et al. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. *Med Sci Sports Exerc*. 2016;48(6):1197-1222. doi:10.1249/MSS.00000000000000001.

5. Esteban-Cornejo I, Tejero-Gonzalez CM, Sallis JF, Veiga OL. Physical activity and cognition in adolescents: A systematic review. *J Sci Med Sport*. 2015;18(5):534-539. doi:10.1016/j.jsams.2014.07.007.

6. Falck RS, Davis JC, Liu-Ambrose T. What is the association between sedentary behaviour and cognitive function? A systematic review. *Br J Sports Med*. 2016;51(10):800-811. doi:10.1136/bjsports-2015-095551.

7. Halloway S, Wilbur J, Schoeny ME, Arfanakis K. Effects of endurance-focused physical activity interventions on brain health: A systematic review. *Biol Res Nurs*. 2016. pii:1099800416660758.

8. Janssen M, Toussaint HM, van Mechelen W, Verhagen EA. Effects of acute bouts of physical activity on children's attention: A systematic review of the literature. *Springerplus*. 2014;3:410. doi:10.1186/2193-1801-3-410.

9. Morrison JD, Mayer L. Physical activity and cognitive function in adults with multiple sclerosis: An integrative review. *Disabil Rehabil*. 2016:1-12.

10. Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. The effects of exercise on cognition in Parkinson's disease: A systematic review. *Transl Neurodegener*. 2014;3(1):5. doi:10.1186/2047-9158-3-5.

11. Sexton CE, Betts JF, Demnitz N, Dawes H, Ebmeier KP, Johansen-Berg H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. *Neuroimage*. 2016;131:81-90. doi:10.1016/j.neuroimage.2015.09.071.

12. Zheng G, Zhou W, Xia R, Tao J, Chen L. Aerobic exercises for cognition rehabilitation following stroke: A systematic review. *J Stroke Cerebrovasc Dis*. 2016b;25(11):2780-2789.doi:10.1016/j.jstrokecerebrovasdis.2016.07.035.

13. Beckett MW, Ardern CI, Rotondi MA. A meta-analysis of prospective studies on the role of physical activity and the prevention of Alzheimer's disease in older adults. *BMC Geriatr*. 2015;15:9. doi:10.1186/s12877-015-0007-2.

14. Cerrillo-Urbina AJ, García-Hermoso A, Sánchez-López M, Pardo-Guijarro MJ, Santos Gómez JL, Martínez-Vizcaíno V. The effects of physical exercise in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis of randomized control trials. *Child Care Health Dev*. 2015;41(6):779-788. doi:10.1111/cch.12255.

15. Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: A meta-analysis. *Brain Res.* 2012;1453:87-101. doi:10.1016/j.brainres.2012.02.068.

16. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. *Psychol Sci.* 2003;14(2):125-130.

17. Dinoff A, Herrmann N, Swardfager W, et al. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. *PLoS One*. 2016;11(9):e0163037. doi:https://doi.org/10.1371/journal.pone.0163037.

18. Etnier JL, Nowell PM, Landers DM, Sibley BA. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. *Brain Res Rev.* 2006;52(1):119-130.

19. Firth J, Stubbs B, Rosenbaum S, et al. Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. *Schizophr Bull*. 2017;43(3):546-556. doi:10.1093/schbul/sbw115.

20. Groot C, Hooghiemstra AM, Raijmakers PG, et al. The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. *Ageing Res Rev.* 2016;25:13-23. doi:10.1016/j.arr.2015.11.005.

21. Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of exercise on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. *Ageing Res Rev.* 2014;16:12-31. doi:10.1016/j.arr.2014.05.002.

22. Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. *Brain Res.* 2010;1341:12-24. doi:10.1016/j.brainres.2010.03.091.

23. Li MY, Huang MM, Li SZ, Tao J, Zheng GH, Chen LD. The effects of aerobic exercise on the structure and function of DMN-related brain regions: A systematic review. *Int J Neurosci*. 2016;127(7):634-649.

24. Ludyga S, Gerber M, Brand S, Holsboer-Trachsler E, Pühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. *Psychophysiology*. 2016;53(11):1611-1626. doi:10.1111/psyp.12736.

25. McMorris T, Hale BJ. Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. *Brain Cogn*. 2012;80(3):338-351. doi:10.1016/j.bandc.2012.09.001.

26. Roig M, Nordbrandt S, Geertsen SS, Nielsen JB. The effects of cardiovascular exercise on human memory: A review with meta-analysis. *Neurosci Biobehav Rev.* 2013;37(8):1645-1666. doi:10.1016/j.neubiorev.2013.06.012.

27. Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. *Psychosom Med*. 2010;72(3):239-252. doi:10.1097/PSY.0b013e3181d14633.

28. Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. *J Intern Med*. 2011;269(1):107-117. doi:10.1111/j.1365-2796.2010.02281.x.

29. Spruit A, Assink M, van Vugt E, van der Put C, Stams GJ. The effects of physical activity interventions on psychosocial outcomes in adolescents: A meta-analytic review. *Clin Psychol Rev.* 2016;45:56-71. doi:10.1016/j.cpr.2016.03.006.

30. Tan BWZ, Pooley JA, Speelman CP. A meta-analytic review of the efficacy of physical exercise interventions on cognition in individuals with autism spectrum disorder and ADHD. *J Autism Dev Disord*. 2016;46(9):3126-3143. doi:10.1007/s10803-016-2854-x.

31. Wu Y, Wang Y, Burgess EO, Wu J. The effects of Tai Chi exercise on cognitive function in older adults: a meta-analysis. *J Sport Health Sci*. 2013;2(4):193-203.

32. Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: A systematic review and meta-analysis of randomised controlled trials. *Br J Sports Med*. 2016a;50:1443-1450.