Evidence Portfolio – Cancer Subcommittee, Question 1

What is the relationship between physical activity and specific cancer incidence?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?
- c. Does the relationship vary by specific cancer subtypes?
- d. Is the relationship present in persons at high risk, such as those with familial predisposition to cancer?

Sources of Evidence: Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports

Conclusion Statements and Grades

BLADDER CANCER

Strong evidence demonstrates that greater amounts of physical activity are associated with reduced risk of developing bladder cancer. **PAGAC Grade: Strong.**

Moderate evidence indicates a dose-response relationship between increasing physical activity levels and decreasing risk of bladder cancer. **PAGAC Grade: Moderate.**

Limited evidence suggests that the effects of physical activity on bladder cancer risk are lower for men than for women. **PAGAC Grade: Limited.** Insufficient evidence is available to determine whether the effects of physical activity on risk of bladder cancer differ by specific age, race/ethnicity, socioeconomic groups, or weight status. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity are similar for all types of bladder cancer. **PAGAC Grade: Not assignable**

Insufficient evidence is available to determine whether the effects of physical activity on bladder cancer risk differ in individuals at elevated risk of bladder cancer. **PAGAC Grade: Not assignable.**

BRAIN CANCER

Insufficient evidence is available to determine whether a relationship between physical activity and overall brain cancer incidence exists. **PACAC Grade: Not assignable.** Limited evidence suggests that physical activity decreases the risk of certain types of brain cancer. Specifically, a reduced risk is observed for glioma and meningioma. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether a dose-response relationship exists between physical activity and brain cancer incidence. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the relationship between physical activity and brain cancer incidence varies by age, sex, race/ethnicity or socioeconomic status because these factors have yet to be examined in the studies conducted to date. **PAGAC Grade: Not assignable.** Insufficient evidence is available to determine whether the relationship between physical activity and brain cancer incidence varies by body mass index. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the relationship between physical activity and brain cancer incidence differs in individuals at high risk of brain cancer. **PAGAC Grade: Not assignable.**

BREAST CANCER

Strong evidence demonstrates that greater amounts of physical activity are associated with a lower risk of breast cancer. **PAGAC Grade: Strong.**

Strong evidence demonstrates that a dose-response relationship exists between greater amounts of physical activity and lower breast cancer risk. **PAGAC Grade: Strong.**

Moderate evidence indicates that greater amounts of physical activity are associated with a greater risk reduction in all women regardless of body mass index. **PAGAC Grade: Moderate.** Insufficient evidence is available to determine whether the amount of physical activity and risk of breast cancer incidence varies by age. **PAGAC Grade: Not assignable.** Limited evidence suggests that the relationship between physical activity and breast cancer does not vary by race/ethnicity. **PAGAC Grade: Limited.** Insufficient evidence is available to determine whether the relationship between physical activity and breast cancer varies by socioeconomic status. **PAGAC Grade: Not assignable.**

Limited, but inconsistent, evidence suggests that the relationship between physical activity and breast cancer varies by specific histologic types of breast cancers. **PAGAC Grade: Limited**.

Limited evidence suggests that the relationship between physical activity and breast cancer is apparent in women at increased breast cancer risk, as an enhanced effect of physical activity was associated with premenopausal breast cancer in women with a positive family history of breast cancer. **PAGAC Grade:** Limited.

COLON CANCER

Strong evidence demonstrates that greater amounts of recreational, occupational, or total physical activity are associated with a lower risk of developing colon cancer. **PAGAC Grade: Strong.**

Strong evidence demonstrates a dose-response relationship between increasing physical activity levels and decreasing risk of colon cancer. **PAGAC Grade: Strong.**

Strong evidence demonstrates that the effects of physical activity on colon cancer risk are evident in both men and women. **PAGAC Grade: Strong.** Insufficient evidence is available to determine whether the effects of physical activity on risk of colon cancer differ by specific age, race/ethnic, or socioeconomic groups in the United States. **PAGAC Grade: Not assignable.** Moderate evidence indicates that weight status does not affect the associations between physical activity and colon cancer risk. **PAGAC Grade: Moderate.**

Strong evidence demonstrates that greater amounts of physical activity are associated with a lower risk of developing both proximal and distal colon cancer. **PAGAC Grade: Strong.**

Insufficient evidence is available to determine whether the effects of physical activity on colon cancer risk differ in individuals at elevated risk of colon cancer. **PAGAC Grade: Not assignable.**

ENDOMETRIAL CANCER

Strong evidence demonstrates that greater amounts of physical activity are associated with a lower risk of endometrial cancer. **PAGAC Grade: Strong.**

Moderate evidence indicates that a dose-response relationship exists between greater amounts of physical activity and lower endometrial cancer risk. **PAGAC Grade: Moderate.**

Moderate evidence indicates that greater amounts of physical activity are associated with a greater risk reduction in women with a body mass index of greater than 25 kg/m² compared to women with a body mass index of less than 25 kg/m². **PAGAC Grade: Moderate.** Insufficient evidence is available to determine whether the association between physical activity and risk of endometrial cancer varies by age, race/ethnicity, or socioeconomic status. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether specific histologic types of endometrial cancers modify the relationships between amounts of physical activity and risk of endometrial cancer. **PAGAC** Grade: Not assignable.

ESOPHAGEAL CANCERS

Strong evidence demonstrates that greater amounts of recreational, occupational, or total physical activity are associated with a lower risk of developing adenocarcinoma of the esophagus. **PAGAC Grade: Strong.**

Limited evidence suggests that greater amounts of physical activity are not associated with a lower risk of developing squamous cell carcinoma of the esophagus. **PAGAC Grade: Limited.**

Limited evidence suggests a dose-response relationship between physical activity and risk of adenocarcinoma of the esophagus. **PAGAC Grade: Limited.**

Available evidence is insufficient to determine whether the effects of physical activity on esophageal cancer risk differ by age, sex, race/ethnicity, weight status, socioeconomic status, or in individuals at elevated risk of esophageal cancer. **PAGAC Grade: Not assignable.**

GASTRIC CANCER

Strong evidence demonstrates that greater amounts of physical activity are associated with a lower risk of developing gastric cancer. **PAGAC Grade: Strong.**

Moderate evidence indicates that as levels of physical activity increase, risk of gastric cancer decreases. **PAGAC Grade: Moderate.**

Insufficient evidence is available on whether the effects of physical activity on gastric cancer risk vary by sex, age, race/ethnicity, socioeconomic groups, or weight status. **PAGAC Grade: Not assignable.**

Moderate evidence indicates that as levels of physical activity increase, the risk of both subtypes of gastric cancer—cardia and non-cardia adenocarcinoma—decreases. **PAGAC Grade: Moderate.**

Insufficient evidence is available to determine whether the effects of physical activity on gastric cancer risk differ in individuals at elevated risk of gastric cancer. **PAGAC Grade: Not assignable.**

HEAD AND NECK CANCERS

Limited evidence suggests that greater amounts of physical activity are associated with a lower risk of head and neck cancer incidence. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether a dose-response relationship exists between physical activity and head and neck cancer incidence. **PAGAC Grade: Not assignable.**

Limited evidence suggests that the relationship between physical activity and head and neck cancer incidence does not vary by age, sex, BMI, or smoking. **PAGAC Grade: Limited.** Insufficient evidence is available to determine whether this relationship varies by race/ethnicity or socioeconomic status because these factors have yet to be examined in the studies conducted to date. **PAGAC Grade: Not assignable.**

Limited evidence suggests that this relationship varies by specific types of head and neck cancers. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether the effects of physical activity on head and neck cancers differ in individuals at elevated risk of head and neck cancers. **PAGAC Grade: Not assignable.**

HEMATOLOGIC CANCERS

Limited evidence suggests a null relationship between physical activity and leukemia incidence. Limited evidence suggests that physical activity has a protective effect on lymphoma and myeloma such that greater amounts of physical activity reduce the risk of lymphoma and myeloma. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether a dose-response relationship exists between greater amounts of physical activity and reduced risk of hematologic cancers. **PAGAC Grade: Not** assignable.

Insufficient evidence is available to determine whether sex modifies the relationship between physical activity and Hodgkin lymphoma, with a risk reduction observed with physical activity for females only. **PAGAC Grade: Not assignable.** Insufficient evidence is available to determine whether body mass index, smoking, or alcohol affect the relationship between physical activity and risk of developing other hematologic cancers, or whether this relationship varies by sex, age, race/ethnicity, or socioeconomic status. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the relationship between physical activity varies by specific types of hematologic cancers. **PAGAC Grade: Not assignable**.

Insufficient evidence is available to determine whether the effects of physical activity on hematologic cancers differ in individuals at elevated risk of hematologic cancers. **PAGAC Grade: Not assignable**.

LUNG CANCER

Moderate evidence indicates that greater amounts of physical activity are associated with a lower risk of lung cancer. **PAGAC Grade: Moderate.**

Limited evidence suggests that a dose-response relationship exists between greater amounts of physical activity and lower lung cancer risk. **PAGAC Grade: Limited.**

Limited evidence suggests that the relationship between amount of physical activity and risk of lung cancer does not vary by age. **PAGAC Grade: Limited.** Limited evidence suggests that greater amounts of physical activity are associated with a greater risk reduction in females than in males. **PAGAC Grade: Limited.** Limited evidence suggests that greater amounts of physical activity are associated with a greater risk reduction in those suggests that greater amounts of physical activity are associated with a greater risk reduction in those with a body mass index of less than 25 kg/m² than in those with higher body mass index. **PAGAC Grade: Limited.** Insufficient evidence is available to determine whether this relationship varies by race/ethnicity or socioeconomic status because these factors have yet to be examined in the studies conducted to date. **PAGAC Grade: Not assignable.**

Limited evidence suggests that specific histologic types of lung cancers do not modify the relationships between amounts of physical activity and risk of lung cancer incidence. **PAGAC Grade: Limited.**

Moderate evidence indicates that greater amounts of physical activity are associated with a greater risk reduction in current and former smokers than in never smokers. **PAGAC Grade: Moderate.**

OVARIAN CANCER

Limited evidence suggests a weak relationship between greater levels of physical activity and lower risk of ovarian cancer. **PAGAC Grade: Limited.**

Limited evidence suggests that no dose-response relationship exists between greater amounts of physical activity and lower ovarian cancer risk. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether the relationship between physical activity and ovarian cancer is modified by age, race/ethnicity, socioeconomic status, or weight status. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the relationship between physical activity is modified by specific histologic types of ovarian cancers. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on ovarian cancer risk differ in individuals at elevated risk of ovarian cancer. **PAGAC Grade: Not assignable.**

PANCREATIC CANCER

Limited evidence suggests that greater amounts of physical activity are associated with a lower risk of developing pancreatic cancer. **PAGAC Grade: Limited.**

Limited evidence suggests that a dose-response association does not exist between physical activity and pancreatic cancer. **PAGAC Grade: Limited.**

Limited evidence suggests that the effects of physical activity on pancreatic cancer risk do not vary by sex. **PAGAC Grade: Limited.** Insufficient evidence is available to determine whether the effects of physical activity on pancreatic cancer risk vary by age, race/ethnicity, socioeconomic groups, or weight status. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on pancreatic cancer risk differ by cancer subtypes. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on pancreatic cancer risk differ in individuals at elevated risk for pancreatic cancer. **PAGAC Grade: Not assignable.**

PROSTATE CANCER

Limited evidence suggests a weak relationship between greater levels of physical activity and lower prostate cancer risk. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether a dose-response relationship exists between higher levels of physical activity and lower prostate cancer risk. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the association between physical activity and prostate cancer varies by age, race/ethnicity, weight status, socioeconomic status, or smoking status. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the relationship between physical activity and prostate cancer varies by tumor sub-type, as risk reductions were observed with increased levels of physical activity in both men with aggressive versus non-aggressive prostate cancer. **PAGAC Grade: Not assignable.**

RECTAL CANCER

Limited evidence suggests that greater amounts of physical activity are not associated with risk of developing rectal cancer. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether a dose-response relationship between increasing physical activity levels and decreasing risk of rectal cancer exists. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on rectal cancer risk differ by sex, age, race/ethnicity, weight status, or socioeconomic groups in the United States. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on rectal cancer risk differ by subtype of rectal cancer. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on rectal cancer risk differ in individuals at elevated risk for rectal cancer. **PAGAC Grade: Not assignable.**

RENAL CANCER

Strong evidence demonstrates that greater amounts of physical activity are associated with reduced risk of developing renal cancer. **PAGAC Grade: Strong.**

Limited evidence suggests that a dose-response relationship exists between increasing physical activity levels and decreasing risk of renal cancer. **PAGAC Grade: Limited.**

Limited evidence suggests that the effects of physical activity on renal cancer risk are similar for men and women. **PAGAC Grade: Limited.** Limited evidence suggests that the effects of physical activity on renal cancer risk do not vary by weight status. **PAGAC Grade: Limited.** Insufficient evidence is available to determine whether the effects of physical activity on risk of renal cancer differ by specific age, race/ethnic, or socioeconomic groups. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity are similar for all subtypes of renal cancer. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on renal cancer risk differ in individuals at elevated risk of renal cancer. **PAGAC Grade: Not assignable.**

THYROID CANCER

Moderate evidence indicates that greater amounts of physical activity are not associated with risk of developing thyroid cancer. **PAGAC Grade: Moderate.**

Insufficient evidence is available to determine whether physical activity levels and risk of thyroid cancer have a dose-response relationship. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the effects of physical activity on thyroid cancer differ by specific sex, age, race/ethnicity, or socioeconomic groups. **PAGAC Grade: Not assignable.** Insufficient evidence is available to determine whether weight status affects the association between physical activity and thyroid cancer risk. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the association of physical activity with thyroid cancer risk differs by subtype of thyroid cancer. **PAGAC Grade: Not assignable.**

Insufficient evidence is available to determine whether the association of physical activity with thyroid cancer risk differs in individuals at elevated risk of thyroid cancer. **PAGAC Grade: Not assignable.**

Description of the Evidence

An initial search for systematic reviews, meta-analyses, pooled analyses, and reports identified sufficient literature to answer the research question as determined by the Cancer subcommittee. Additional searches for original research were not needed.

Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports

BLADDER CANCER

Overview

Three existing reviews were included: 1 meta-analysis, $\frac{1}{2}$ 1 pooled analysis, $\frac{2}{3}$ and 1 report. The reviews were published from 2014 to 2017.

The meta-analysis included 15 studies and covered the following timeframe: 1975–November 2013.¹ The pooled analysis² included 12 studies that examined bladder cancer. The report³ included 12 studies that examined bladder cancer.

Exposures

One review examined occupational and leisure-time physical activity, comparing high versus low levels of moderate and vigorous intensity physical activity.¹ The report³ examined total and leisure-time physical activity, whereas the pooled analysis² was restricted to moderate or vigorous intensity leisure-time physical activity.

Outcomes

Included reviews examined bladder cancer risk.

BRAIN CANCER

Overview

Two existing reviews were included: 1 meta-analysis⁴ and 1 pooled analysis.² The reviews were published in 2015 and 2016.

The meta-analysis included 6 studies⁴ and the pooled analysis included 10 studies² that examined brain cancer. The meta-analysis covered an extensive timeframe: from inception to February 2015.⁴

Exposures

One review, <u>Niedermaier et al⁴</u> compared the highest versus lowest levels of physical activity provided by each of the included studies, and the <u>Moore et al²</u> review was restricted to moderate or vigorous intensity leisure-time physical activity.

Outcomes

Included reviews examined brain cancer risk.

BREAST CANCER

Overview

A total of 6 existing reviews were included: 4 meta-analyses⁵⁻⁸ and 2 pooled analyses.^{2, 9} The reviews were published from 2013 to 2016.

The meta-analyses included a range of 9 to 67 studies that examined breast cancer. The meta-analyses covered an extensive timeframe: from inception to December 2014,⁵ inception to November 2014,⁷ inception to November 2012,⁸ and inception to July 2015.⁶

The pooled analyses included a range of 4 to 10 studies that examined breast cancer.

Exposures

Three reviews examined moderate-to-vigorous leisure-time physical activity,^{2, 5, 6} and 2 reviews examined occupational and non-occupational physical activity.^{7, 8} <u>Gong et al</u>⁹ examined vigorous physical activity.

Outcomes

Included reviews examined breast cancer risk. Four reviews also examined different breast cancer subtypes.^{5, 6, 8, 9}

COLON CANCER

Overview

A total of 11 existing reviews were included: 1 systematic review, $\frac{10}{7}$ 7 meta-analyses, $\frac{5, 11-16}{1}$ 1 pooled analysis, $\frac{2}{3}$ and 2 reports. $\frac{17, 18}{12}$

The systematic review by <u>Pham et al¹⁰</u> included 8 studies and covered the following timeframe: inception to May 2011.

The meta-analyses included a range of 14 to 52 studies that examined colon cancer. The meta-analyses covered an extensive timeframe: from inception to December $2007,\frac{12}{2}$ inception to June $2009,\frac{16}{2}$

inception to 2010,¹⁵ inception to December 2014,⁵ 1946 to January 2012,¹¹ 1966 to 2010,¹³ and 1980 to February 2016.¹⁴

The pooled analysis² included 12 studies that examined colon cancer.

Exposures

Three reviews examined leisure-time physical activity,^{2, 5, 12} and <u>Robsahm et al¹⁵</u> examined physical activity as lifetime, recreational, and occupational activity.

Outcomes

Included reviews examined colon cancer risk.

ENDOMETRIAL CANCER

Overview

A total of 5 existing reviews were included: 4 meta-analyses^{5, <u>19-21</u>} and 1 pooled analysis.² The reviews were published from 2010 to 2016.

The meta-analyses included a range of 9 to 33 studies that examined endometrial cancer. The metaanalyses covered an extensive timeframe: from inception to December 2009,²⁰ inception to September 2013,¹⁹ inception to October 2014,²¹ and inception to December 2014.⁵

The pooled analysis² included 9 studies that examined endometrial cancer.

Exposures

Leisure-time physical activity was assessed in 2 of the meta-analyses^{5, <u>19</u>} and in the pooled analysis.² <u>Moore et al²⁰</u> examined recreational and occupational activity, and <u>Schmid et al²¹</u> assessed recreational, occupational, and household activity and walking in their review.

Outcomes

Included reviews examined endometrial cancer risk.

ESOPHAGEAL CANCERS

Overview

A total of 4 existing reviews were included: 3 meta-analyses²²⁻²⁴ and 1 pooled analysis.² The reviews were published from 2014 to 2016.

The meta-analyses included a range of 9 to 24 studies that examined esophageal cancer. The metaanalyses covered an extensive timeframe: from inception to December 2013,²² inception to May 2013,²³ and 1966 to 2013.²⁴

The pooled analysis² included 6 studies that examined esophageal cancer.

Exposures

All of the meta-analyses examined recreational physical activity and/or occupational activity. The pooled analysis² examined moderate or vigorous intensity leisure-time physical activity.

Outcomes

Included reviews examined risk for esophageal cancers.

GASTRIC CANCER

Overview

A total of 6 existing reviews were included: 5 meta-analyses^{22, 23, 25-27} and 1 pooled analysis.² The reviews were published from 2014 to 2016.

The meta-analyses included a range of 9 to 24 studies. The meta-analyses covered an extensive timeframe: inception to June 2015,²⁶ inception to December 2013,²² inception to May 2013,²³ inception to July 2012,²⁵ and 1966 to 2013.²⁷

The pooled analysis² included 7 studies that examined gastric cancer.

Exposures

One review²⁵ used the World Health Organization's physical activity recommendations to assess 4 different levels of physical activity ranging from insufficiently active to highly active. All other reviews examined leisure-time physical activity and/or occupational activity.

Outcomes

Included reviews examined gastric cancer risk and associations by cancer subtype (gastric cardia vs. non-cardia).

HEAD AND NECK CANCERS

Overview

Two pooled analyses were included.^{2, 28} The pooled analyses were published in 2011 and 2016. The pooled analyses included 4 studies²⁸ and 12 studies² that reported on head and neck cancers.

Exposures

Both pooled analyses examined leisure-time physical activity.^{2, 28}

Outcomes

Included reviews examined risk for all head and neck cancers.

HEMATOLOGIC CANCERS

Overview

A total of 5 existing reviews were included: 3 meta-analyses^{5, 29, 30} and 2 pooled analysis.^{2, 31} The reviews were published from 2013 to 2016.

The reviews included a range of 8 to 23 studies that reported on hematologic cancers. The metaanalyses covered an extensive timeframe: from inception to January 2013,³⁰ inception to June 2013,²⁹ and inception to December 2014.⁵

Exposures

Two of the meta-analyses^{5, 29} and the 2 pooled analyses^{2, 31} examined leisure-time physical activity. The remaining meta-analysis³⁰ examined both leisure-time and occupational physical activity.

Outcomes

Included reviews examined the risk of different hematologic cancers. Three reviews examined non-Hodgkin's lymphoma, ^{2, 29, 30} 2 reviews examined Hodgkin's lymphoma, ^{29, 30} 2 reviews examined

leukemia,^{2, 29} 2 reviews examined all types of lymphoma combined,^{29, 30} and 2 reviews reported separate results for multiple myeloma/myeloma.^{2, 29} Liu et al⁵ examined lymphoid neoplasms combined, Jochem et al²⁹ examined other rare types of hematologic cancers, and <u>Aschebrook-Kilfoy et al³¹</u> examined mycosis fungoides and Sezary syndrome.

LUNG CANCER

Overview

A total of 7 existing reviews were included: 6 meta-analyses^{5, 32-36} and 1 pooled analysis.² The reviews were published from 2012 to 2016.

The meta-analyses included a range of 8 to 28 studies. The meta-analyses covered an extensive timeframe: from inception to November 2011,³³ inception to May 2012,³⁵ inception to January 2014,³⁶ inception to December 2014,⁵ inception to May 2015,³² and inception to September 2015.³⁴

The pooled analysis² included 12 studies that examined lung cancer.

Exposures

Two of the reviews^{35, 36} examined high versus low levels of any type of physical activity. The 4 remaining reviews^{5, 32-34} and the pooled analysis² examined moderate or vigorous intensity leisure-time physical activity.

Outcomes

Included reviews examined lung cancer risk. <u>Buffart et al³³</u> restricted their analysis to smokers only.

OVARIAN CANCER

Overview

A total of 4 existing reviews were included: 2 meta-analyses^{5, 37} and 2 pooled analyses.^{2, 38} The reviews were published from 2014 to 2016.

The meta-analyses included a range of 9 to 19 studies that examined ovarian cancer. The meta-analysis covered the following timeframes: from 1984 to June 2014^{37} and inception to December 2014.5

Both pooled analyses^{2, <u>38</u>} included 9 studies each that examined ovarian cancer.

Exposures

Only leisure-time physical activity was assessed in 1 meta-analysis⁵ and the 2 pooled analyses.^{2, 38} Non-occupational physical activity was assessed in 1 meta-analysis.³⁷

Outcomes

Included reviews examined ovarian cancer risk.

PANCREATIC CANCER

Overview

A total of 6 existing reviews were included: 1 systematic review,³⁹ 4 meta-analyses,^{5, 40-42} and 1 pooled analysis.² The reviews were published from 2008 to 2016.

The systematic review included 18 studies and covered the following timeframe: 1966 to April 2008.³⁹

The meta-analyses included a range of 26 to 30 studies. The meta-analyses covered an extensive timeframe: from inception to August 2014,⁴⁰ inception to July 2009,⁴² and inception to December 2014.⁵

The pooled analysis² included 10 studies that examined pancreatic cancer.

Exposures

Different physical activity domains were assessed in 2 of the reviews^{39, 42} including leisure, transport, occupational, and total activity. <u>Behrens et al⁴⁰</u> assessed overall physical activity over time. The 2 remaining reviews^{5, 41} and the pooled analysis² examined only moderate or vigorous intensity leisure-time physical activity.

Outcomes

Included reviews examined pancreatic cancer risk.

PROSTATE CANCER

Overview

A total of 3 existing reviews were included: 2 meta-analyses^{5, 43} and 1 pooled analyses.² The reviews were published in 2011 and 2016.

The meta-analyses included a range of 18 to 43 studies that examined prostate cancer. The metaanalyses covered an extensive timeframe: from inception to May 2011^{43} and inception to December 2014.5

The pooled analysis² included 7 studies that examined prostate cancer.

Exposures

<u>Liu et al</u>⁴³ assessed different domains of physical activity, including leisure, occupational, and total activity. Only leisure-time physical activity was assessed in the second meta-analysis by <u>Liu et al</u>⁵ and the pooled analysis by <u>Moore et al.</u>²

Outcomes

Included reviews examined prostate cancer risk.

RECTAL CANCER

Overview

A total of 7 existing reviews were included: 1 systematic review, $\frac{10}{3}$ 3 meta-analyses, $\frac{5}{2}$, $\frac{12}{15}$ 1 pooled analysis, $\frac{2}{3}$ and 2 reports. $\frac{17}{12}$, $\frac{18}{12}$ The reviews were published from 2011 to 2017.

The systematic review by <u>Pham et al¹⁰</u> included 8 studies and covered the following timeframe: inception to May 2011.

The meta-analyses included a range of 5 to 14 studies that examined rectal cancer. The meta-analyses covered an extensive timeframe: from inception to December 2007,¹² inception to 2010,¹⁵ and inception to December 2014.⁵

The pooled analysis² included 12 studies that examined rectal cancer.

Exposures

Three reviews^{2, 5, 12} assessed leisure-time physical activity. <u>Robsahm et al¹⁵</u> examined lifetime physical activity and also looked at recreational and occupational physical activity.

Outcomes

Included reviews examined rectal cancer risk.

RENAL CANCER

Overview

A total of 3 existing reviews were included: 1 meta-analysis,⁴⁴ 1 pooled analyses,² and 1 report.⁴⁵ The reviews were published from 2013 to 2017.

The meta-analysis by <u>Behrens and Leitzmann⁴⁴</u> included 19 studies and covered an extensive timeframe: from inception to September 2012.

The pooled analysis² included 11 studies that examined renal cancer. The report included meta-analysis data from 12 studies.⁴⁵

Exposures

<u>Behrens and Leitzmann⁴⁴</u> and the <u>World Cancer Research Fund International⁴⁵</u> examined total, occupational, and recreational physical activity, while <u>Moore et al²</u> examined moderate or vigorous intensity leisure-time physical activity.

Outcomes

Included reviews examined renal cancer risk.

THYROID CANCER

Overview

A total of 3 existing reviews were included: 1 meta-analysis⁴⁶ and 2 pooled analyses.^{2, 47} The reviews were published from 2012 to 2016.

The meta-analysis by <u>Schmid et al⁴⁶</u> included 13 studies and covered an extensive timeframe: from inception to October 2013.

The pooled analyses included 5^{47} and 11 studies² that examined thyroid cancer.

Exposures

<u>Schmid et al⁴⁶</u> examined total physical activity; <u>Moore et al²⁰</u> examined moderate or vigorous intensity leisure time physical activity; and <u>Kitahara et al⁴⁷</u> examined time spent in vigorous or strenuous leisure time or occupational activity.

Outcomes

Included reviews examined thyroid cancer risk.

Populations Analyzed

The table below list the populations analyzed in each article.

Table 1. Populations Analyzed by All Sources of Evidence

	Sex	Race/ Ethnicity	Age	Weight Status	Chronic Conditions	Other
Abioye, 2015			Adults			Smoking status
Aschebrook- Kilfoy, 2014				Underweight (BMI: below 18.5), Normal/Healthy weight (BMI: 18.5–24.9), Overweight (BMI: 25– 29.9) and obese (BMI: 30 and above)		Smoking status
Bao, 2008			Adults			
Behrens, 2013	Male, Female		Adults			
Behrens, 2014	Male, Female		Adults			
Behrens, 2015	Male, Female			Normal/Healthy weight (BMI: 18.5–24.9), Overweight and obese		Smoking exposure (high/low); Study location (North America, Europe, Asia)
Boyle, 2012			Adults			
Brenner, 2016	Male, Female		Adults			Smoking status
Buffart, 2014	Male, Female		Adults			Smoking status
Cannioto, 2016	Female		Adults	Underweight (BMI: below 18.5), Normal/Healthy weight (BMI: 18.5–24.9), Overweight and obese		
Chen, 2014	Male, Female		Adults			
Farris, 2015	Male, Female		Adults (<50, 50–60, and >60)			
Gong, 2016	Female	Black or African American	Adults: <50 vs. >50	Normal/Healthy weight (BMI: 18.5–24.9), Overweight (BMI: 25– 29.9) and obese (BMI: 30 and above)		Menopausal status (premenopausal/ postmenopausal)
Harriss, 2009	Male, Female					
Jochem, 2014	Male, Female		Adults			
Johnson, 2013			Adults	Normal/Healthy weight (BMI: 18.5–24.9),		Smoking status

	Sex	Race/ Ethnicity	Age	Weight Status	Chronic Conditions	Other
				Obese (BMI: 30 and above)		
Keimling, 2014	Male, Female		Adults			
Keum, 2014	Female		Adults			Smoking status, Hormone replacement therapy (HRT)
Kitahara, 2012	Male, Female		Adults	Underweight (BMI: below 18.5), Normal/Healthy weight (BMI: 18.5–24.9), Overweight (BMI: 25– 29.9) and obese (BMI: 30 and above)	Diabetes	Smoking status, Alcohol intake, education (high school or less, post-high school)
Kyu, 2016			Adults			
Liu, 2011		European, North American, American, Whites, Blacks, Canadian, Asia-Pacific	Adults <20; 20–45; 45– 65; ≥65	Underweight (BMI: below 18.5), Normal/Healthy weight (BMI: 18.5–24.9), Overweight (BMI: 25– 29.9) and obese (BMI: 30 and above)		
Liu, 2016	Male, Female		Adults	Underweight (BMI: below 18.5), Normal/Healthy weight (BMI: 18.5-24.9), Overweight (BMI: 25- 29.9) and obese (BMI: 30 and above)		Smoking status, Menopausal status
Moore, 2010	Female		Adults			
Moore, 2016	Male, Female		Adults	Underweight (BMI: below 18.5), Normal/Healthy weight (BMI: 18.5-24.9), Overweight (BMI: 25- 29.9) and obese (BMI: 30 and above)		Smoking status
Neilson, 2016	Female		Adults			Menopausal status
Nicolotti, 2011	Male, Female		Adults <45; >45			
Niedermaier, 2015	Male, Female		Adults			
O'Rorke, 2010			Adults			
Pham, 2012			Adults			Residents of Japan

	Sex	Race/ Ethnicity	Age	Weight Status	Chronic Conditions	Other
Pizot, 2016	Female		Adults			
Psaltopoulou, 2016	Male, Female		Adults			
Robsahm, 2013			Adults			
Schmid, 2013	Male, Female					
Schmid, 2015	Female		Childhood (birth to 19 years), Adulthood (19 to 49 years), Older age (50 years or older)	Normal/Healthy weight (BMI: 18.5–24.9), Overweight and obese		Menopausal status (premenopausal/ postmenopausal)
Schmid, 2016	Male, Female		Adults			Smoking Status
Singh, 2014			Adults			
Singh, 2014	Male, Female		Adults			Study Location (Asian, Western)
Sun, 2012	Male, Female		Adults			
Vermaete, 2013			Adults			
WCRF, 2011			Not reported			
WCRF, 2015a			Not reported			
WCRF, 2015b			Not reported			
WCRF, 2017			Not reported			
Wolin, 2009	Male, Female		Adults			
Wu, 2013	Female		Adults	Normal/Healthy weight (BMI: 18.5–24.9), Overweight and obese		Menopausal status (postmenopausal, premenopausal), Study location (America, Europe, Asia)
Zhong, 2014	Female					
Zhong, 2016	Male, Female		Adults			Smoking status

Supporting Evidence

Existing Systematic Reviews, Meta-Analyses, and Pooled Analyses

Table 2. Existing Systematic Reviews, Meta-Analyses, and Pooled Analyses Individual Evidence Summary Tables

Bladder, Brain, Breast, Colon, Endometrial, Esophageal, Gastric, Head and Neck, Hematologic, Lung, Ovarian, Rectal, Renal, Pancreatic, Prostate, and Thyroid Cancers

Pooled Analysis

Citation: Moore SC, Lee IM, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. *JAMA Intern Med.* 2016;176(6):816-825. doi:10.1001/iamainternmed.2016.1548.

doi:10.1001/jamainternmed.2016.154	8.
Purpose: To determine the	Abstract: IMPORTANCE: Leisure-time physical activity has
association of leisure-time physical	been associated with lower risk of heart-disease and all-cause
activity (LTPA) with incidence of	mortality, but its association with risk of cancer is not well
common types of cancer and	understood. OBJECTIVE: To determine the association of
whether associations vary by body	leisure-time physical activity with incidence of common types
size and/or smoking.	of cancer and whether associations vary by body size and/or
Total # of Studies: 12	smoking. DESIGN, SETTING, AND PARTICIPANTS: We pooled
Total # of Studies: 12 Exposure Definition: LTPA of moderate intensity, defined as an intensity of 3 or more metabolic equivalents (METs), or vigorous intensity, defined as 6 or more METs. LTPA levels were harmonized by converting them to cohort- specific percentiles, with values from 0 (low activity) to 100 (high activity). If physical activity was based on categorical responses, the percentile at the category midpoint was assigned. For example, if 20% of participants indicated the lowest level of activity, they were assigned the 10th percentile. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Cancer risks: Incident first primary cancers were identified by follow-up questionnaires and review of medical records, cancer registry linkage, or both. Examine Cardiorespiratory Fitness	
as Outcome: No	modestly attenuated associations for several cancers, but 10
	of 13 inverse associations remained statistically significant
	after this adjustment. Leisure-time physical activity was

	associated with higher risks of malignant melanoma (HR, 1.27; 95% Cl, 1.16-1.40) and prostate cancer (HR, 1.05; 95% Cl, 1.03- 1.08). Associations were generally similar between overweight/obese and normal-weight individuals. Smoking status modified the association for lung cancer but not other smoking-related cancers. CONCLUSIONS AND RELEVANCE: Leisure-time physical activity was associated with lower risks of many cancer types. Health care professionals counseling inactive adults should emphasize that most of these associations were evident regardless of body size or smoking history, supporting broad generalizability of findings.
Populations Analyzed: Underweight	Author-Stated Funding Source: Intramural Research Program
(BMI: Below 18.5), Normal/Healthy weight (BMI: 18.5–24.9), Overweight	of the National Institutes of Health
(BMI: 25–29.9) and Obese (BMI: 30	
and Above), Smoking status, Adults,	
Male, Female	

Breast, Colon, Endometrial, Hematologic, Lung, Ovarian, Pancreatic, Prostate, and Rectal, Cancers Meta-Analysis

Citation: Liu L, Shi Y, Li T, et al. Leisure time physical activity and cancer risk: evaluation of the WHO's recommendation based on 126 high-quality epidemiological studies. *Br J Sports Med*. 2016;50(6):372-378. doi:10.1136/bjsports-2015-094728.

Abstract: BACKGROUND: The WHO has concluded that physical activity reduces the risk of numerous diseases. However, few systemic reviews have been performed to
assess the role of leisure time physical activity (LTPA) in lowering the risk of cancer in a dose-dependent manner and furthermore the suitability of recommendation of physical activity by the WHO. METHODS: A systematic review and meta-analysis was designed to estimate cancer risk by LTPA in binary comparison and in a dose- dependent manner. MEDLINE and Web of Science were searched up to 30 December 2014 without language restrictions. Reference lists were reviewed for potential articles. RESULTS: A total of 126 studies were recruited into the meta-analysis. Overall, the total cancer risk was reduced by 10% in people who undertook the most LTPA as compared with those who did the least. Dose-response meta-analysis indicated that the current WHO recommendation (equal to an average of 10 metabolic equivalents of energy hours per week) induced a 7% (95% CI 5% to 9%) cancer reduction. Moreover, the protective role of LTPA against cancer becomes saturated at 20 metabolic equivalents of energy hours per week, with a relative risk of 0.91 (95% CI 0.88 to 0.93). Subanalyses results based on cancer types showed that LTPA only exhibited significant protection against breast cancer and colorectal cancer. CONCLUSIONS: Our meta-analysis indicates that the current WHO recommendation of physical activity can result in a 7% reduction in cancer risk, which is mainly attributed to its protective role against breast cancer and colorectal cancer. Furthermore, two- fold of current recommendation level is considered to give its saturated protection against cancer.
Author-Stated Funding Source: National Natural Science Foundation of China

Bla	dder Cancer			
Meta-Analysis				
-	hem C, Leitzmann MF. The association between			
physical activity and bladder cancer: systematic	c review and meta-analysis. Br J Cancer.			
2014;110(7):1862-1870. doi:10.1038/bjc.2014.	-			
Purpose: To quantify the relation of physical	Abstract: BACKGROUND: Physical activity may			
activity (PA) to bladder cancer risk.	protect against bladder cancer through several			
Timeframe: January 1975–November 2013	biologic pathways, such as enhanced immune			
Total # of Studies: 15	function and decreased chronic inflammation.			
Exposure Definition: Four PA components	Physical activity may also indirectly prevent bladder			
were assessed across studies: energy	cancer by reducing obesity. A sizeable number of			
expenditure (metabolic equivalents of task	epidemiologic studies have examined the association			
[METs] per week, kilojoule (kJ)/minute, or	between physical activity and bladder cancer, but the			
weighted PA indexes); activity duration	available evidence has not yet been formally			
(hours/week or percentage of time spent	summarised using meta-analysis. METHODS: We			
physically active; activity frequency (times	performed a systematic literature review and meta-			
per week of PA); and qualitative assessments	analysis of English-language studies published from			
of PA (sedentary, light, moderate, or high	January 1975 through November 2013. We followed			
PA). Dose-response was assessed by	the PRISMA guidelines and used a random effects			
converting the PA cut points from each study	model to estimate the summary risk estimates for			
to percentile cut points based on the	the association between physical activity and bladder			
reported PA group sizes. Percentiles ranged	cancer. RESULTS: A total of 15 studies with 5,402,369			
from 0 to 100, with 0 indicating the lowest	subjects and 27,784 bladder cancer cases were			
and 100 indicating the highest PA level. Low	included. High vs low levels of physical activity were			
vs. high PA compared and stratified analyses	related to decreased bladder cancer risk (summary			
provided by PA intensity (moderate,	relative risk (RR)=0.85, 95% confidence interval (CI)=0.74-0.98; I(2)=83%; P-value for heterogeneity			
vigorous), four PA components, PA type of	across all studies<0.001). Results were similar for			
assessment (self-reported, by proxy,	cohort studies (RR=0.89, 95% CI=0.80-1.00; I(2)=64%)			
interview), and timing in life of PA (recent, consistent, past). Effect size calculated for	and case-control studies (RR=0.71, 95% CI=0.43-1.16;			
recreational and occupational PA.	I(2)=87%; P-value for difference=0.108) and they			
Measures Steps: No	were comparable for women (RR=0.83, 95% CI=0.73-			
Measures Bouts: No	0.94; I(2)=0%) and men (RR=0.92, 95% CI=0.82-1.05;			
Examines HIIT: No	I(2)=67; P-value for difference=0.657). Findings were			
Outcomes Addressed: Bladder cancer risk	also comparable for recreational (RR=0.81, 95%			
Examine Cardiorespiratory Fitness as	CI=0.66-0.99; I(2)=77%) and occupational physical			
Outcome: No	activity (RR=0.90, 95% CI=0.76-1.0; I(2)=76%; P-value			
	for difference=0.374), and they were largely			
	consistent for moderate (RR=0.85, 95% CI=0.75-0.98;			
	I(2)=76%) and vigorous activity (RR=0.80, 95%			
	CI=0.64-1.00;I(2)=87%; P-value for difference=0.535).			
	CONCLUSIONS: Physical activity is associated with			
	decreased risk of bladder cancer. Further studies are			
	required to assess the relations of intensity,			
	frequency, duration, and timing in life of physical			
	activity to bladder cancer risk.			
Populations Analyzed: Male, Female, Adults	Author-Stated Funding Source: Not Reported			
Brain Cancer				

Meta-Analysis	
	hrens G, Schmid D, Schlecht I, Fischer B, Leitzmann MF. Body mass index,
	adult meningioma and glioma: a meta-analysis. Neurology.
	i:10.1212/WNL.000000000002020.
Purpose: To analyze	Abstract: OBJECTIVE: Whether adiposity and lack of physical activity
body-mass index and	affect the risk for developing meningioma and glioma is poorly
physical activity (PA) in	understood. Our objective was to characterize these associations in
relation to risk of	detail. METHODS: We conducted a systematic review and meta-analysis
meningioma and glioma.	of adiposity and physical activity in relation to meningioma and glioma
Timeframe: Inception-	using cohort and case-control studies published through February 2015.
2015	We followed the Preferred Reporting Items for Systematic Reviews and
Total # of Studies: 13	Meta-Analyses (PRISMA) guidelines. RESULTS: We identified 12 eligible
Exposure Definition: PA:	studies of body mass index (BMI) and 6 studies of physical activity,
comparison between the	comprising up to 2,982 meningioma cases and 3,057 glioma cases. Using
highest and the lowest	normal weight as the reference group, overweight (summary relative risk
study-specific categories	[RR] = 1.21, 95% confidence interval [CI] = 1.01-1.43) and obesity (RR =
of physical activity.	1.54, 95% CI = 1.32-1.79) were associated with increased risk of
Measures Steps: No	meningioma. In contrast, overweight (RR = 1.06, 95% CI = 0.94-1.20) and
Measures Bouts: No	obesity (RR = 1.11, 95% CI = 0.98-1.27) were unrelated to glioma.
Examines HIIT: No	Similarly, dose-response meta-analyses revealed a statistically significant
Outcomes Addressed:	positive association of BMI with meningioma, but not glioma. High vs low
Relative risk of adult	physical activity levels showed a modest inverse relation to meningioma
meningiomas or gliomas.	(RR = 0.73, 95% CI = 0.61-0.88) and a weak inverse association with
Examine	glioma (RR = 0.86, 95% CI = 0.76-0.97). Relations persisted when the data
Cardiorespiratory Fitness	were restricted to prospective studies, except for the association
as Outcome: No	between physical activity and glioma, which was rendered statistically
	nonsignificant (RR = 0.91, 95% CI = 0.77-1.07). CONCLUSIONS: Adiposity
	is related to enhanced risk for meningioma but is unassociated with risk
	for glioma. Based on a limited body of evidence, physical activity is
	related to decreased risk of meningioma but shows little association with
	risk of glioma.
Populations Analyzed:	Author-Stated Funding Source: University of Regensburg, Germany
Male, Female, Adult	

Pooled Analysis

Citation: Gong Z, Hong CC, Bandera EV, et al. Vigorous physical activity and risk of breast cancer in the African American breast cancer epidemiology and risk consortium. *Breast Cancer Res Treat*. 2016;159(2):347-356. doi:10.1007/s10549-016-3936-3.

Purpose: To investigate the role of recent physical activity (PA) in the risk of breast cancer overall and by tumor estrogen receptor (ER) status in African American women.

Total # of Studies: 4

Exposure Definition: Vigorous PA (average hours per week): self-reported using different questions per study. Data reported included participants' average number of hours of vigorous activity, type of physical fitness activities that were engaged in regularly on a weekly basis, and frequency of activity (converted the number of days of activity to hours per week by assuming that participants engaged in an average of 45 minutes of the reported activity each day). Or, participants reported any activities they participated in for at least 1 hour per week for at least 3 months. Data was combined assigning metabolic equivalent of energy expenditure (MET) value and average hours per week to compute vigorous activity, defined as activities with a MET value of 6.0 or greater. Assessed various categorizations of PA, including 0, <2, 2-6, and 7+ hours/week; categories were further collapsed down to 0, <2, and 2+ hours/week in models examining potential effect modification by several breast cancer risk factors.

Measures Steps: No Measures Bouts: No

Examines HIIT: No

Outcomes Addressed: Breast cancer:presentImmunohistochemistry results of breast cancer werehistoryobtained from hospital pathology records andaffectercancer registry data and were used to classify caseslarge poas estrogen receptor (ER)+ and ER- breast cancer.wigorouExamine Cardiorespiratory Fitness as Outcome: NomodestPopulations Analyzed: Normal/Healthy weight (BMI:Author18.5–24.9), Overweight (BMI: 25–29.9) and ObeseInstitut

(BMI: 30 and above), Premenopause vs. postmenoupause, Female, Black or African

American, Adults: <50 vs. >50

Abstract: The relationship between physical activity and breast cancer risk has been extensively studied among women of European descent, with most studies reporting inverse associations. However, data on American women of African ancestry (AA) and by tumor subtypes are sparse. Thus, we examined associations of vigorous exercise and breast cancer risk overall, and by estrogen receptor (ER) status, in the African American **Breast Cancer Epidemiology and Risk** Consortium. We pooled data from four large studies on 2482 ER+ cases, 1374 ER- cases, and 16,959 controls. Multivariable logistic regression was used to compute odds ratios (OR) and 95 % confidence intervals (CI) for the risk of breast cancer overall, and polytomous logistic regression was used to model the risk of ER+ and ER- cancer. Recent vigorous exercise was associated with a statistically significant, modestly decreased risk for breast cancer overall (OR 0.88, 95 % CI 0.81-0.96) and for ER+ cancer (OR 0.88, 95 % CI 0.80-0.98), but not for ER- cancer (OR 0.93, 95 % CI 0.82-1.06). Overall, there was no strong evidence of effect modification by age, menopausal status, body mass index, and parity. However, our data were suggestive of modification by family history, such that an inverse association was present among women without a family history but not among those with a relative affected by breast cancer. Results from this large pooled analysis provide evidence that vigorous physical activity is associated with a modestly reduced risk of breast cancer in AA women, specifically ER+ cancer.

Author-Stated Funding Source: National Institutes of Health

Meta-Analysis

Citation: Neilson HK, Farris MS, Stone CR, et al. Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: a systematic review and meta-analysis. *Menopause*. 2017;24(3):322-344. doi: 10.1097/GME.000000000000745.

Purpose: To estimate breast cancer risk associated with high versus low recreational activity, separately for premenopausal and postmenopausal and postmenopausal and merame: Inception-July 2015Abstract: OBJECTIVE: Physical and possibly premenopausal breast cancer risk, although different biologic mechanisms are proposed. Our primary objective was to estimate breast cancer risk associated with high versus low levels of moderate-vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) 23.0. Recreational of home oriented. Walking or bicycling to and from work qualified as MVPA. Compared activity category. Neasures Steps: No Measures Stops: No Examines HIIT: NoAbstract: OBJECTIVE: Physical activity, separately for premenopausal and postmenopausal of postmenopausal and postmenopausal on the highest vs. the lowed adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% CI) for women with high versus lower levels of moderate-vigorous activity (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal (RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopausal and postmenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Athough risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects were menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberat Cancer cancer, subgroup effects w	, , , ,	
levels of moderate-to-vigorous recreational activity, separately for premenopausal and postmenopausal women.risk, although different biologic mechanisms are proposed. Our primary objective was to estimate breast cancer risk associated with high versus low levels of moderate-vigorous recreational activity, separately for premenopausal and postmenopausal women. METHODS: We conducted a systematic review of literature published to July 2015.Total # of Studies: 67Exposure Definition: Moderate-to- vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0. Recreational if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category. Measures Bouts: No Measures Bouts: No Measures Addressed: Breast cancer. first ever diagnosis of invasive (or nonspecific) breast cancer. Subgroups: tumor subtypes: tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.No Mosure and post- menopausal (Sa Studies) breast cancer, Subgroups: tumor subtypes: tumer histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.No the end post- menopausal but not premenopausal but not premenop	Purpose: To estimate breast cancer	Abstract: OBJECTIVE: Physical inactivity increases
recreational activity, separately for premenopausal and postmenopausal and memory and the second of the second	risk associated with high versus low	postmenopausal and possibly premenopausal breast cancer
premenopausal and postmenopausal women. associated with high versus low levels of moderate-vigorous recreational activity, separately for premenopausal and postmenopausal women. METHODS: We conducted a Total # of Studies: 67 systematic review of literature published to July 2015. Exposure Definition: Moderate-to- vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0. Included reports were cohort or case-control studies relating moderate-vigorous recreational physical activity (metabolic equivalent ×/=3.0) to breast cancer incidence, exclusively (>/=90%) in premenopausal or postmenopausal women. We appraised study quality and performed meta-analyses using random effects modeling. Subgroup meta-analyses using recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal, loss of invasive (or nonspecific) breast cancer. Subgroups: tumor subtypes: tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No Solt 20.82-0.91 and RR = 0.99 [0.8-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although rother subgroup effects were menopause-dependent. Author-Stated Funding	levels of moderate-to-vigorous	risk, although different biologic mechanisms are proposed.
postmenopausal women.recreational activity, separately for premenopausal and postmenopausal women. METHODS: Wee conducted a systematic review of literature published to July 2015.Total # of Studies: 67Exposure Definition: Moderate-to- vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0.Recreational: if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category.Jon one therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examines HIT: NOOutcomes Addressed: Breast cancer: first ever diagnosis of invasive (or nonspecific) breast cancer: furst ever diagnosis of invasive (or nonspecific) breast cancer: furst ever diagnosis of invasive (or nonspecific) breast cancer: furst ever diagnosis of below 25), and race.Rest termenopausal, hormone therapy, family history, parity, oral corcupational, household) activity (RR = 0.99 [0.87-1.06] premenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively. Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	recreational activity, separately for	Our primary objective was to estimate breast cancer risk
Timeframe: Inception–July 2015postmenopausal women. METHODS: We conducted a systematic review of literature published to July 2015.Exposure Definition: Moderate-to- vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0. Recreational: if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category. Measures Steps: No Measures Steps: No 	premenopausal and	associated with high versus low levels of moderate-vigorous
Total # of Studies: 67systematic review of literature published to July 2015.Exposure Definition: Moderate-to- vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0.systematic review of literature published to July 2015.Recreational: if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category.in premenopausal or postmenopausal women. We appraised study quality and performed meta-analyses using random effects modeling. Subgroup meta-analyses were based on tumor subtype, race, body mass index, parity, hormone therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (Rs, 95% CI) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal chort studies (RR = 0.90 (0.85-0.95)] and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 (0.77-1.06] premenopausal, Rs = 0.99 (0.86-1.08] postmenopausal but not premenopausal but not premenopausal but sets as Outcome: NoReaures NoExamine Cardiorespiratory Fitness as Outcome: NoBost-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Soutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer<	postmenopausal women.	recreational activity, separately for premenopausal and
Exposure Definition: Moderate-to- vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0.Included reports were cohort or case-control studies relating moderate-vigorous recreational physical activity (metabolic equivalent /=3.0) to breast cancer incidence, exclusively (>=90%) in premenopausal or postmenopausal women. We appraised study quality and performed meta-analyses using random effects modeling. Subgroup meta-analyses were based on tumor subtype, race, body mass index, parity, hormone therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% CI) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (A6 studies) freast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal, household) activity (RR = 0.91 [0.77-1.06] premenopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.Re 0.96 [0.86-1.08] postmenopausal levest cancer (RR = 0.88 [0.82-0.95] and R = 0.99 [0.98-1.00], respectively. Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsPoutometa-allyses Author-Stated Funding Source: Health Senior Scholar Aw	Timeframe: Inception–July 2015	postmenopausal women. METHODS: We conducted a
vigorous recreational physical activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0. Recreational: if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category.moderate-vigorous recreational physical activity (metabolic equivalent >/=3.0) to breast cancer incidence, exclusively (>/=90%) in premenopausal or postmenopausal women. We appraised study quality and performed meta-analyses using ardom effects modeling. Subgroup meta-analyses were based on tumor subtype, race, body mass index, parity, hormone therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% Cl) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.Jost remenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pr	Total # of Studies: 67	systematic review of literature published to July 2015.
activity (MVPA): MVPA defined as metabolic equivalent (MET) ≥ 3.0. Recreational: if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category.equivalent >/=3.0) to breast cancer incidence, exclusively (>=90%) in premenopausal or postmenopausal women. We appraised study quality and performed meta-analyses using random effects modeling. Subgroup meta-analyses were based on tumor subtype, race, body mass index, parity, hormone therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% Cl) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (S8 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal, for premenopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: NoImage: S8 (0.82-0.95) and RR = 0.91 (0.77-1.06] premenopausal but not premenopausal breast cancer (RR = 0.88 (0.82-0.95) and RR = 0.99 (0.98-1.00), respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsPopulations, Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Wom	Exposure Definition: Moderate-to-	Included reports were cohort or case-control studies relating
metabolic equivalent (MET) ≥ 3.0. Recreational: if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared woren in the highest vs. the lowest activity category.(>/=90%) in premenopausal or postmenopausal women. We appraised study quality and performed meta-analyses using random effects modeling. Subgroup meta-analyses were based on tumor subtype, race, body mass index, parity, hormone therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% CI) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal chort studies (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, RR = 0.96 [0.86-1.08] postmenopausal. Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	vigorous recreational physical	moderate-vigorous recreational physical activity (metabolic
Recreational: if the activity was not occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared work quality category. Measures Steps: No Measures Bouts: No Examines HIIT: No family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No appraised study quality and performed meta-analyses were based on tumor subtype: to body fatters adjustment did not vary by menopause dapendent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal b	activity (MVPA): MVPA defined as	equivalent >/=3.0) to breast cancer incidence, exclusively
occupational or home oriented. Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category.random effects modeling. Subgroup meta-analyses were based on tumor subtype, race, body mass index, parity, hormone therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% Cl) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal cohort studies (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.Resumes adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.83-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	metabolic equivalent (MET) ≥ 3.0.	(>/=90%) in premenopausal or postmenopausal women. We
 Walking or bicycling to and from work qualified as MVPA. Compared women in the highest vs. the lowest activity category. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Breast cancer: first ever diagnosis of invasive (or nonspecific) breast cancer. Subgroups: tumor subtypes; tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Pre- and post-menopausal status, Female, Adults Populations Analyzed: Pre- and post-menopausal status, Female, Adults 	Recreational: if the activity was not	appraised study quality and performed meta-analyses using
work qualified as MVPA. Compared women in the highest vs. the lowest activity category.hormone therapy use, family history of cancer, and statistical adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% CI) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal cohort studies (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.Inverse associations were weaker among postmenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopausal bre	occupational or home oriented.	random effects modeling. Subgroup meta-analyses were
women in the highest vs. the lowest activity category.adjustment for body fatness. Dose-response relations were examined. RESULTS: Pooled relative risks (RRs, 95% CI) for women with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal chort studies (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25), and race.story parity, oral contraception, BMI (above 25 and below 25).story parity, oral contraception, BMI (above 25 and below 25).story parity, oral contraception, BMI (above 25 and below 25)	Walking or bicycling to and from	based on tumor subtype, race, body mass index, parity,
activity category.activity category.Measures Steps: NoMeasures Steps: NoMeasures Bouts: NoExamines HIIT: NoOutcomes Addressed: Breast cancer: first ever diagnosis of invasive (or nonspecific) breast cancer. Subgroups: tumor subtypes: tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.Examine Cardiorespiratory Fitness as Outcome: NoPopulations Analyzed: Pre- AdultsPopulations Analyzed: Pre- AdultsPopulations Analyzed: Pre- AdultsPovelopment Award for MultaPovelopment Award in Prevention from the Canadian CancerPovelopment Award in Prevention from the Canadian Cancer	work qualified as MVPA. Compared	hormone therapy use, family history of cancer, and statistical
Measures Steps: No Measures Bouts: No Examines HIIT: Nowomen with higher versus lower levels of moderate-vigorous recreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal cohort studies (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal and postmenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	women in the highest vs. the lowest	
Measures Bouts: No Examines HIIT: Norecreational activity were RR = 0.80 (0.74-0.87) and RR = 0.79 (0.74-0.84) for premenopausal (43 studies) and postmenopausal (43 studies) and postmenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal cohort studies (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	activity category.	
Examines HIIT: No(0.74-0.84) for premenopausal (43 studies) and postmenopausal (58 studies) breast cancer, respectively, with high heterogeneity. Inverse associations were weaker among postmenopausal cohort studies (RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopausal breast cancer foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	Measures Steps: No	.
Outcomes Addressed: Breast cancer: first ever diagnosis of invasive (or nonspecific) breast cancer. Subgroups: tumor subtypes: tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.postmenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	Measures Bouts: No	, , , , , , , , , , , , , , , , , , , ,
cancer: first ever diagnosis of invasive (or nonspecific) breast cancer. Subgroups: tumor subtypes: tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.high heterogeneity. Inverse associations were weaker among postmenopausal, RR = 0.90 [0.85-0.95]) and studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopausa-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	Examines HIIT: No	
invasive (or nonspecific) breast cancer. Subgroups: tumor subtypes: tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race.postmenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	Outcomes Addressed: Breast	
 cancer. Subgroups: tumor subtypes: tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No Studies that statistically adjusted for nonrecreational (eg, occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent. Populations Analyzed: Pre- and post-menopausal status, Female, Adults Adults 	cancer: first ever diagnosis of	
 tumor histology, pre- and post- menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Pre- and post-menopausal status, Female, Adults occupational, household) activity (RR = 0.91 [0.77-1.06] premenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent. Populations Analyzed: Pre- and post-menopausal status, Female, Adults 		
 menopausal, hormone therapy, family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Pre- and post-menopausal status, Female, Adults premenopausal, RR = 0.96 [0.86-1.08] postmenopausal). Risk estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent. Populations Analyzed: Pre- and post-menopausal status, Female, Adults 		
 family history, parity, oral contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No estimates with versus without body fatness adjustment did not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent. Populations Analyzed: Pre- and post-menopausal status, Female, Adults Author-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer 		
 contraception, BMI (above 25 and below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Pre- and post-menopausal status, Female, Adults not vary by menopause status, although other subgroup effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent. Populations Analyzed: Pre- and post-menopausal status, Female, Adults 		
 below 25), and race. Examine Cardiorespiratory Fitness as Outcome: No effects were menopause-dependent. Among studies of overweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent. Populations Analyzed: Pre- and post-menopausal status, Female, Adults Author-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer 		
Examine Cardiorespiratory Fitness as Outcome: Nooverweight/obese women, there was an inverse association with postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		
as Outcome: Nowith postmenopausal but not premenopausal breast cancer (RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		
(RR = 0.88 [0.82-0.95] and RR = 0.99 [0.98-1.00], respectively). Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		
Dose-response curves were generally nonlinear. CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer	as Outcome: No	
CONCLUSIONS: Although risk estimates may be similar for premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		
premenopausal and postmenopausal breast cancer, subgroup effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		
effects may be menopause-dependent.Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		- · · ·
Populations Analyzed: Pre- and post-menopausal status, Female, AdultsAuthor-Stated Funding Source: Health Senior Scholar Award from Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		
post-menopausal status, Female, Adultsfrom Alberta Innovates-Health Solutions, Alberta Cancer Foundation Weekend to End Women's Cancers, Career Development Award in Prevention from the Canadian Cancer		
AdultsFoundation Weekend to End Women's Cancers, CareerDevelopment Award in Prevention from the Canadian Cancer		
Development Award in Prevention from the Canadian Cancer		
	Adults	
Society.		Society.

Meta-Analysis

Citation: Pizot C, Boniol M, Mullie P, et al. Physical activity, hormone replacement therapy and breast cancer risk: a meta-analysis of prospective studies. *Eur J Cancer*. 2016;52:138-154. doi:10.1016/j.ejca.2015.10.063.

u01.10.1010/j.cjca.2015.10.005.	
Purpose: To examine the association	Abstract: BACKGROUND: Lower risk of breast cancer has
between physical activity (PA) and breast	been reported among physically active women, but the
cancer risk in prospective studies,	risk in women using hormone replacement therapy (HRT)
exploring the effect that breast cancer	appears to be higher. We quantified the association
risk factors, especially hormone	between physical activity and breast cancer, and we
replacement therapy use, could have on	examined the influence that HRT use and other risk
this association.	factors had on this association. METHODS: After a
Timeframe: Inception-2014	systematic literature search, prospective studies were
Total # of Studies: 38	meta-analysed using random-effect models applied on
Exposure Definition: Physical activity:	highest versus lowest level of physical activity. Dose-
both occupational and nonoccupational.	response analyses were conducted with studies reporting
Reports included as metabolic equivalent	physical activity either in hours per week or in hours of
(MET) hours/week with different	metabolic equivalent per week (MET-h/week). RESULTS:
references and ranks of activity, duration	The literature search identified 38 independent
of PA per week or duration of PA per day.	prospective studies published between 1987 and 2014
Subgroups: occupational and	that included 116,304 breast cancer cases. Compared to
nonoccupational, metric for physical	the lowest level of physical activity, the highest level was
activity (MET, hours/week, or no	associated with a summary relative risk (SRR) of 0.88
quantitative measure).	(95% confidence interval [CI] 0.85, 0.90) for all breast
Measures Steps: No	cancer, 0.89 (95% CI 0.83, 0.95) for ER+/PR+ breast
Measures Bouts: No	cancer and 0.80 (95% CI 0.69, 0.92) for ER-/PR- breast
Examines HIIT: No	cancer. Risk reductions were not influenced by the type
Outcomes Addressed: Incident cases of	of physical activity (occupational or non-occupational),
breast cancer, presented as relative risks.	adiposity, and menopausal status. Risk reductions
Subgroups: menopausal status, hormonal	increased with increasing amounts of physical activity
status, period of study (before or after	without threshold effect. In six studies, the SRR was 0.78
1989), location of study, BMI adjusted.	(95% CI 0.70, 0.87) in women who never used HRT and
Examine Cardiorespiratory Fitness as	0.97 (95% CI 0.88, 1.07) in women who ever used HRT,
Outcome: No	without heterogeneity in results. Findings indicate that a
	physically inactive women engaging in at least 150 min
	per week of vigorous physical activity would reduce their
	lifetime risk of breast cancer by 9%, a reduction that
	might be two times greater in women who never used
	HRT. CONCLUSION: Increasing physical activity is
	associated with meaningful reductions in the risk of
	breast cancer, but in women who ever used HRT, the
	preventative effect of physical activity seems to be
	cancelled out.
Populations Analyzed: Female, Adults	Author-Stated Funding Source: International Prevention
	Research Institute

Meta-Analysis

Citation: Wu Y, Zhang D, Kang S. Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat. 2013;137(3):869-882. doi:10.1007/s10549-012-2396-7. Purpose: To assess the breast cancer risk for Abstract: We conducted a meta-analysis to the highest vs. lowest categories of physical summarize the evidence from prospective studies activity (PA) among adults. regarding the association between physical activity **Timeframe:** Inception–2012 and breast cancer risk. A comprehensive search was conducted to identify eligible studies. The fixed Total # of Studies: 31 or random effect model was used based on Exposure Definition: PA: highest vs. lowest. heterogeneity test. The dose-response relationship Subgroup analysis was performed by type of PA was assessed by restricted cubic spline model and categorized as occupational, nonoccupational multivariate random-effect meta-regression. (including recreational activity and household Overall, 31 studies with 63,786 cases were activity), recreational, household, and walking; included, and the combined relative risk (RR) with by intensity of PA (moderate or vigorous); and 95 % CI of breast cancer was 0.88 (0.85-0.91). In the period of life during which PA was performed (<25 years, 25-50 years, >50 years, subgroup analysis by activity type, data from 27 studies including 37,568 cases for non-occupational or throughout the follow-up). According to the activity (including recreational activity and metabolic equivalents (METs) assigned to each

specific activity, we combined the intensity of activity reported as "high," "active," "strenuous," or "vigorous" in the original studies as vigorous intensity. Dose-response analysis compared the 25th, 50th, and 75th percentiles of the levels of PA for nonoccupational activity (MET hours/week), recreational activity (MET hours/week), moderate plus vigorous activity (hours/week), and vigorous activity (hours/week). Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Breast cancer relative risk. Subgroup analysis by estrogen receptor (ER) and progesterone receptor (PR) status (positive: ER+/PR+, or negative: ER-/PR-), tumor stage (in situ or invasive). **Examine Cardiorespiratory Fitness as** Outcome: No

household activity) and seven studies including 28,268 cases for occupational activity were used, and the RR (95 % CI) of breast cancer was 0.87 (0.83-0.91) and 0.90 (0.83-0.97), respectively. The inverse association was consistent among all subgroups analyses. Stronger association was found for subjects with BMI <25 kg/m(2) [0.72 (0.65-0.81)], premenopausal women [0.77 (0.72-0.84)], and estrogen and progesterone receptornegative breast cancer [0.80 (0.73-0.87)]. Doseresponse analysis suggested that the risk of breast cancer decreased by 2 % (P < 0.00) for every 25 metabolic equivalent (MET)-h/week increment in non-occupational physical activity, 3 % (P < 0.00) for every 10 MET-h/week (roughly equivalent to 4 h/week of walking in 2 miles/h or 1 h/week of running in 6 miles/h) increment in recreational activity, and 5 % (P < 0.00) for every 2 h/week increment in moderate plus vigorous recreational activity, respectively. Physical activity could

significantly reduce the risk of breast cancer.Populations Analyzed: Normal/Healthy weight
(BMI: 18.5–24.9), Overweight and obese,
Menopausal status (postmenopausal,
premenopausal), Study location (America,
Europe, Asia), Female, AdultsAuthor-Stated Funding Source: Not Reported

	Colon Cancer				
Meta-Analysis					
Citation: Boyle T, Keegel T, Bull	Citation: Boyle T, Keegel T, Bull F, Heyworth J, Fritschi L. Physical activity and risks of proximal and				
distal colon cancers: a systemat	tic review and meta-analysis. J Natl Cancer Inst. 2012;104(20):1548-				
1561. doi:10.1093/jnci/djs354.					
Purpose: To investigate	Abstract: BACKGROUND: Although there is convincing				
whether the association	epidemiological evidence that physical activity is associated with a				
between physical activity (PA)	reduced risk of colon cancer, it is unclear whether physical activity is				
and colon cancer differs by	differentially associated with the risks of proximal colon and distal				
subsite.	colon cancers. We conducted a systematic review and meta-analysis				
Timeframe: 1946–January	to investigate this issue. METHODS: MEDLINE and EMBASE were				
2012	searched for English-language cohort and case-control studies that				
Total # of Studies: 21	examined associations between physical activity and the risks of				
Exposure Definition: PA;	proximal colon and distal colon cancers. A random-effects meta-				
domains (occupational,	analysis was conducted to estimate the summary relative risks (RRs)				
recreational, household, or	for the associations between physical activity and the risks of the two				
two or more of these	cancers. All statistical tests were two-sided. RESULTS: A total of 21				
domains combined).	studies met the inclusion criteria. The summary relative risk of the				
Measures Steps: No	main results from these studies indicated that the risk of proximal				
Measures Bouts: No	colon cancer was 27% lower among the most physically active people				
Examines HIIT: No	compared with the least active people (RR = 0.73, 95% confidence				
Outcomes Addressed: Colon	interval [CI] = 0.66 to 0.81). An almost identical result was found for				
cancer: proximal, distal	distal colon cancer (RR = 0.74, 95% CI = 0.68 to 0.80). CONCLUSION:				
Examine Cardiorespiratory	The results of this systematic review and meta-analysis suggest that				
Fitness as Outcome: No	physical activity is associated with a reduced risk of both proximal				
	colon and distal colon cancers, and that the magnitude of the				
	association does not differ by subsite. Given this finding, future				
	research on physical activity and colon cancer should focus on other				
	aspects of the association that remain unclear, such as whether				
	sedentary behavior and nonaerobic physical activity are associated				
	with the risk of colon cancer.				
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported				

	Colon, Rectal Cancers			
Meta-Analysis				
Citation: Harriss DJ, Atkinson G, Batterham A, et al; Colorectal Cancer, Lifestyle, Exercise And				
Research Group. Lifestyle factors a	and colorectal cancer risk (2): a systematic review and meta-analysis			
of associations with leisure-time p	hysical activity. Colorectal Dis. 2009;11(7):689-701.			
doi:10.1111/j.1463-1318.2009.017	767.x.			
Purpose: To undertake a	Abstract: OBJECTIVE: Increased physical activity may decrease the			
systematic review and meta-	risk of colorectal cancer. As a prerequisite to the determination of			
analysis of prospective	lifestyle attributable risks, we performed a systematic review and			
observational studies to quantify	meta-analysis of prospective observational studies to quantify			
gender-specific risk of colon and	gender-specific risk associated with increased leisure-time			
rectal cancer associated with	physical activity (LT-PA). METHOD: We searched MEDLINE and			
increased leisure time physical	EMBASE (to December 2007), and other sources, selecting reports			
activity, and specifically, to	based on strict inclusion criteria. We used random-effects meta-			
explore the quantification of a	analyses to estimate summary risk ratios (RR) and 95% confidence			
dose–response relationship.	intervals (95% CI) for uppermost vs lowermost categories of			
Timeframe: Inception-2007	physical activity. To investigate dose-response, we explored risks			
Total # of Studies: 14	ratios as a function of cumulative percentiles of physical activity			
Exposure Definition: Leisure	distribution. RESULTS: Fifteen datasets from 14 articles, including			
time physical activity.	7873 incident cases, were identified. For colon cancer, there were			
Measures Steps: No	inverse associations with LT-PA for men (RR: 0.80; 95% CI: 0.67-			
Measures Bouts: No	0.96) and women (0.86; 0.76-0.98). LT-PA did not influence risk of			
Examines HIIT: No	rectal cancer. The dose-response analysis was consistent with			
Outcomes Addressed: Incidence	linear pattern reductions in risk of colon cancer in both genders.			
of colon cancer.	There was evidence of moderate between-study heterogeneity			
Examine Cardiorespiratory	but summary estimates were broadly consistent across potential			
Fitness as Outcome: No	confounding factors. CONCLUSION: Increased LT-PA is associated			
	with a modest reduction in colon but not rectal cancer risk; a risk			
	reduction, which previously may have been overstated. LT-PA only			
	interventions in public health cancer prevention strategies are			
	unlikely to impact substantially on colorectal cancer incidences.			
Populations Analyzed: Male,	Author-Stated Funding Source: British Medical Association			
Female				

Colon Cancer	
Meta-Analysis	al. Meta-analyses of colorectal cancer risk factors. Cancer i:10.1007/s10552-013-0201-5. nrisk Abstract: PURPOSE: Demographic, behavioral, an environmental factors have been associated with increased risk of colorectal cancer (CRC). We reviewed the published evidence and explored associations between risk factors and CRC incident METHODS: We identified 12 established non- screening CRC risk factors and performed a comprehensive review and meta-analyses to quantify each factor's impact on CRC risk. We use random-effects models of the logarithms of risks across studies: inverse-variance weighted average for dichotomous factors and generalized least squares for dose-response for multi-level factors. RESULTS: Significant risk factors include inflammatory bowel disease (RR = 2.93, 95 % CI 1.79-4.81); CRC history in first-degree relative (RR 1.80, 95 % CI 1.61-2.02); body mass index (BMI) to overall population (RR = 1.10 per 8 kg/m(2) increased physical activity score); cigarette smoking (RR = 1. 95 % CI 1.03-1.08 for 5 pack-years); and consumption of red meat (RR = 1.13, 95 % CI 1.09 1.16 for 5 servings/week), fruit (RR = 0.85, 95 % CI 0.75-0.96 for 3 servings/day), and vegetables (RR 0.86, 95 % CI 0.78-0.94 for 5 servings/day). CONCLUSIONS: We developed a comprehensiver modeling strategy that incorporates multiple effe to predict an individual's risk of developing CRC. Inflammatory bowel disease and history of CRC in first-degree relatives are associated with much higher risk of CRC. Increased BMI, red meat intake cigarette smoking, low physical activity, low vegetable consumption, and low fruit consumptio were associated with moderately increased risk o CRC.
Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Colorectal or colon cancer risk. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Normal/Healthy weight	
(BMI: 18.5–24.9), Obese (BMI: 30 and above), Smoking, Adults	Cancer Research Alliance

Colon Cancer

Meta-Analysis

Citation: Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. *BMJ*. 2016;354:i3857. doi:10.1136/bmj.i3857.

Purpose: To quantify the	Abstract: OBJECTIVE: To quantify the dose-response associations
dose-response associations	between total physical activity and risk of breast cancer, colon cancer,
between total physical	diabetes, ischemic heart disease, and ischemic stroke events. DESIGN:
activity (PA) and risk of	Systematic review and Bayesian dose-response meta-analysis. DATA
breast cancer, colon cancer,	SOURCES: PubMed and Embase from 1980 to 27 February 2016, and
diabetes, ischemic heart	references from relevant systematic reviews. Data from the Study on
disease, and ischemic stroke	Global AGEing and Adult Health conducted in China, Ghana, India,
events.	Mexico, Russia, and South Africa from 2007 to 2010 and the US
Timeframe: 1980–February	National Health and Nutrition Examination Surveys from 1999 to
2016	2011 were used to map domain specific physical activity (reported in
Total # of Studies: 174 (19	included studies) to total activity. ELIGIBILITY CRITERIA FOR
for colon cancer)	SELECTING STUDIES: Prospective cohort studies examining the
Exposure Definition: PA in	associations between physical activity (any domain) and at least one
metabolic equivalent (MET)	of the five diseases studied. RESULTS: 174 articles were identified: 35
minutes/week were	for breast cancer, 19 for colon cancer, 55 for diabetes, 43 for ischemic
estimated from all included	heart disease, and 26 for ischemic stroke (some articles included
studies. Continuous and	multiple outcomes). Although higher levels of total physical activity
categorical dose-response	were significantly associated with lower risk for all outcomes, major
between PA and outcomes	gains occurred at lower levels of activity (up to 3000-4000 metabolic
conducted. Categorical	equivalent (MET) minutes/week). For example, individuals with a
compared insufficiently	total activity level of 600 MET minutes/week (the minimum
active (<600 MET	recommended level) had a 2% lower risk of diabetes compared with
minutes/week), low active	those reporting no physical activity. An increase from 600 to 3600
(600–3,999 MET minutes),	MET minutes/week reduced the risk by an additional 19%. The same
moderately active (4,000–	amount of increase yielded much smaller returns at higher levels of
7,999 MET minutes), and	activity: an increase of total activity from 9000 to 12 000 MET
highly active (≥8,000 MET	minutes/week reduced the risk of diabetes by only 0.6%. Compared
minutes).	with insufficiently active individuals (total activity <600 MET
Measures Steps: No	minutes/week), the risk reduction for those in the highly active
Measures Bouts: No	category (>/=8000 MET minutes/week) was 14% (relative risk 0.863,
Examines HIIT: No	95% uncertainty interval 0.829 to 0.900) for breast cancer; 21%
Outcomes Addressed: Risk of	(0.789, 0.735 to 0.850) for colon cancer; 28% (0.722, 0.678 to 0.768)
colon cancer. Pool relative	for diabetes; 25% (0.754, 0.704 to 0.809) for ischemic heart disease;
risk estimated for analyses.	and 26% (0.736, 0.659 to 0.811) for ischemic stroke. CONCLUSIONS:
Examine Cardiorespiratory	People who achieve total physical activity levels several times higher
Fitness as Outcome: No	than the current recommended minimum level have a significant
	reduction in the risk of the five diseases studied. More studies with
	detailed quantification of total physical activity will help to find more
	precise relative risk estimates for different levels of activity.
Populations Analyzed: Adults	Author-Stated Funding Source: Bill and Melinda Gates Foundation

Colon, Rectal Cancers	
Systematic Review	
	al; Research Group for the Development and Evaluation of
Cancer Prevention Strategies in Japan. Phys	sical activity and colorectal cancer risk: an evaluation based
on a systematic review of epidemiologic ev	idence among the Japanese population. Jpn J Clin Oncol.
2012;42(1):2-13. doi:10.1093/jjco/hyr160.	
Purpose: To assess the strength and	Abstract: OBJECTIVE: Higher levels of physical activity
consistency of the association between	have been consistently associated with a decreased risk
physical activity (PA) and colorectal	of colon cancer, but not rectal cancer, in Western
cancer risk among the Japanese	populations. The present study systematically evaluated
population.	epidemiologic evidence on the association between
Timeframe: Inception-2011	physical activity and colorectal cancer risk among the
Total # of Studies: 8	Japanese population. METHODS: Original data were
Exposure Definition: PA: differed by	obtained from MEDLINE searched using PubMed or from
study, including MET hours per day,	searches of the Ichushi database, complemented by
hours per day, occupational PA, sports	manual searches. The associations were evaluated based
activity, physical exercise. Comparisons	on the strength of evidence, the magnitude of
with the lowest PA as reference are	association and biologic plausibility. RESULTS: Two cohort
presented.	studies and six case-control studies were identified. A
Measures Steps: No	weak to strong protective association between physical
Measures Bouts: No	activity and colon cancer risk was observed in both
Examines HIIT: No	cohort studies, showing a graded relationship, and
Outcomes Addressed: Colorectal cancer:	among the majority of case-control studies, with some
histoligically confirmed or patients	showing a dose-response relationship. The association
undergoing surgery for a first diagnosis of	observed in cohort studies was more consistent and
colorectal cancer. Presented as odds ratio	stronger in men than in women and for proximal colon
or relative risk. Subtypes: region of colon	cancer than for distal colon cancer. A protective
or rectum.	association with rectal cancer was found only in case-
Examine Cardiorespiratory Fitness as	control studies, but the evidence was less consistent and
Outcome: No	weaker than that observed for colon cancer.
	CONCLUSIONS: Physical activity probably decreases the
	risk of colorectal cancer among the Japanese population.
	More specifically, the evidence for the colon is probable,
Denulations Analyzada langu varida da	whereas that for the rectum is insufficient.
Populations Analyzed: Japan residents,	Author-Stated Funding Source: Third Term
Adults	Comprehensive 10-year Strategy for Cancer Control from
	the Ministry of Health, Labour and Welfare, Japan.

Colon, Rectal Cancers

Meta-Analysis

Citation: Robsahm TE, Aagnes B, Hjartaker A, Langseth H, Bray FI, Larsen IK. Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic review and meta-analysis of cohort studies. *Eur J Cancer Prev*. 2013;22(6):492-505. doi:10.1097/CEJ.0b013e328360f434.

Purpose: To provide an overview of	Abstract: Several studies report varying incidence rates of
risk estimates for colorectal cancer by	cancer in subsites of the colorectum, as an increasing
subsites according to body mass index	proportion appears to develop in the proximal colon.
and physical activity.	Varying incidence trends together with biological
Timeframe: Inception-2010	differences between the colorectal segments raise questions
Total # of Studies: 30	of whether lifestyle factors impact on the risk of cancer
Exposure Definition: Physical activity	differently at colorectal subsites. We provide an updated
as lifetime, recreational, and	overview of the risk of cancer at different colorectal subsites
occupational; levels classified as	(proximal colon, distal colon, and rectum) according to BMI
vigorous/high, moderate, or	and physical activity to shed light on this issue. Cohort
sedentary/inactive. Exposure	studies of colorectal cancer, published in English throughout
categories included hours/week,	2010, were identified using PubMed. The risk estimates
times/week, and metabolic	from 30 eligible studies were summarized for BMI and
equivalents.	physical activity. A positive relationship was found between
Measures Steps: No	BMI and cancer for all colorectal subsites, but most
Measures Bouts: No	pronounced for the distal colon [relative risk (RR) 1.59, 95%
Examines HIIT: No	confidence interval (Cl) 1.34-1.89]. For the proximal colon
Outcomes Addressed: Risk estimates	and rectum, the risk estimates were 1.24 (95% CI 1.08-1.42)
for colorectal cancer. Subgroups:	and 1.23 (95% Cl 1.02-1.48), respectively. Physical activity
proximal colon, distal colon, and	was related inversely to the risk of cancer at the proximal
rectum.	(RR 0.76, 95% CI 0.70-0.83) and distal colon (RR 0.77, 95% CI
Examine Cardiorespiratory Fitness as	0.71-0.83). Such a relationship could not be established for
Outcome: No	the rectum (RR 0.98, 95% Cl 0.88-1.08). In conclusion, the
	results suggest minor differences in the associations of BMI
	and the risk of cancer between the colorectal subsites. For
	physical activity, the association does not seem to differ
	between the colonic subsites, but a difference was observed
	between the colon and the rectum, perhaps indicating that
	different mechanisms are operating in the development of
	colon and rectal cancer.
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported

Colon Cancers	
Meta-Analysis	
Citation: Wolin KY, Yan Y, Colditz GA, Lee IM. Physical activity and colon cancer prevention: a meta-	
analysis. Br J Cancer. 2009;100(4):611-616. doi:10.1038/sj.bjc.6604917.	
Purpose: To estimate the summary	Abstract: Although an inverse association between physical
relative risk of colon cancer associated	activity and risk of colon cancer is well established, a formal
with physical activity (PA), based on	estimate of the magnitude of this risk reduction that
available studies to date.	includes recent studies is not available. This analysis
Timeframe: Inception-2008	examines the association by sex and study design, restricting
Total # of Studies: 52	analyses to studies where data for colon cancer alone were
Exposure Definition: Self-reported	available. The authors reviewed published studies through
total PA, recreational or leisure-time	June 2008 examining the association between physical
PA, PA in commuting, and	activity and risk of colon cancer. Heterogeneity and
occupational PA.	publication bias were evaluated and random effects models
Measures Steps: No	used to estimate relative risks (RR). Differences by sex and
Measures Bouts: No	study design were evaluated. A total of 52 studies were
Examines HIIT: No	included. An inverse association between physical activity
Outcomes Addressed: Odds ratio or	and colon cancer was found with an overall relative risk (RR)
relative risk of colon cancer.	of 0.76 (95% confidence interval (CI): 0.72, 0.81). For men,
Examine Cardiorespiratory Fitness as	the RR was 0.76 (95% CI: 0.71, 0.82); for women, this was
Outcome: No	little different, (RR=0.79, 95% CI: 0.71, 0.88). The findings
	from case-control studies were stronger (RR=0.69, 95% CI:
	0.65, 0.74) than for cohort studies (RR=0.83, 95% CI: 0.78,
	0.88). This study confirms previous studies reporting an
	inverse association between physical activity and colon
	cancer in both men and women, and provides quantitative
	estimates of the inverse association.
Populations Analyzed: Males,	Author-Stated Funding Source: Not Reported
Females, Adults	

Endometrial Cancer

Meta-Analysis

Citation: Keum N, Ju W, Lee DH, et al. Leisure-time physical activity and endometrial cancer risk: dose-response meta-analysis of epidemiological studies. *Int J Cancer*. 2014;135(3):682-694. doi:10.1002/ijc.28687.

u01.10.1002/1jc.20007.	
Purpose: To identify the shape of the	Abstract: Although considerable evidence suggests that
dose-response relationship and to	leisure-time physical activity is associated with a reduced
reconcile the results based on metabolic	risk of endometrial cancer (EC), the shape of dose-
equivalent (MET) hours/week and	response relationship has not been investigated and
hours/week with a specific focus on	previous meta-analyses have not accounted for
leisure-time physical activity (PA).	differences in measures of physical activity. To address
Timeframe: Inception-2013	such issues, we conducted linear and nonlinear dose-
Total # of Studies: 20	response meta-analyses by metabolic equivalent of task
Exposure Definition: Leisure time PA. The	(MET)-hour/week and hour/week, respectively, based on
highest vs. lowest analyses pooled	observational studies published up to September 2013
relative risks for the highest vs. lowest	identified from PubMed and Embase databases.
categories of PA assessed in any	Summary relative risks (RRs) and 95% confidence
measure. The dose-response analyses	intervals (CIs) were calculated using a random-effects
were performed for two measures of PA,	model. In the linear dose-response analysis, an increase
MET hours/week and hours/week. Sub-	in leisure-time physical activity by 3 MET-hour/week was
group analyses provided by MET	associated with an approximately 2% reduced risk of EC
hours/week vs. hours/week; unit (MET	(summary RR = 0.98, p = 0.02, 95% CI = 0.95-1.00, I(2) =
hours/week, frequency, duration, or	53%, p(heterogeneity) = 0.06, three case-control studies
subjective); period between PA and	and three cohort studies, 3,460 cases, range of activity =
diagnosis (<5 years or >5 years); and	0-50 MET-hour/week) and an increase by an hour/week
validated vs. not validated PA	was associated with an approximately 5% reduced risk of
questionnaire.	EC (summary RR = 0.95, p < 0.001, 95% CI = 0.93-0.98, I(2)
Measures Steps: No	= 31%, p(heterogeneity) = 0.20, four case-control studies
Measures Bouts: No	and two cohort studies, 3,314 cases, range of activity = 0-
Examines HIIT: No	12 hour/week). Nonlinear dose-response meta-analysis
Outcomes Addressed: Endometrial	suggested that the curve may plateau at 10 MET-
cancer risks.	hour/week (p(change) in slope = 0.04) but this statistical
Examine Cardiorespiratory Fitness as	significance was sensitive to one study. No evidence of a
Outcome: No	nonlinear association was indicated by hour/week
	(p(change) in slope > 0.69). In conclusion, an increase in
	leisure-time physical activity may continue to decrease
	EC risk, within the range of 0-50 MET-hour/week or 0-15
	hour/week. Future studies should evaluate possible
	independent role of intensity of physical activity and
	effect modification by obesity.
Populations Analyzed: Smoking status,	Author-Stated Funding Source: Not Reported
Hormone replacement therapy (HRT),	
Female, Adults	

Endometrial Cancer

Meta-Analysis

Citation: Moore SC, Gierach GL, Schatzkin A, Matthews CE. Physical activity, sedentary behaviours, and the prevention of endometrial cancer. *Br J Cancer*. 2010;103(7):933-938. doi:10.1038/sj.bjc.6605902.

doi:10.1038/sj.bjc.6605902.	
Purpose: To evaluate the biological and	Abstract: Physical activity has been
epidemiological evidence between low levels of	hypothesised to reduce endometrial cancer risk,
physical activity (PA), sedentary behavior, and	but this relationship has been difficult to confirm
endometrial cancer.	because of a limited number of prospective
Timeframe: Inception–2009	studies. However, recent publications from five
Total # of Studies: 14	cohort studies, which together comprise 2663
Exposure Definition: Recreational PA: time spent	out of 3463 cases in the published literature for
in varying leisure activities such as walking, cycle	analyses of recreational physical activity, may
and/or sports. Intense exercise: running, or	help resolve this question. To synthesise these
causing a sweat. Occupational PA: PA based on job	new data, we conducted a meta-analysis of
codes or classification of job intensity by self-	prospective studies published through to
report. Reference category: no or little PA, or a	December 2009. We found that physical activity
very sedentary job (such as desk job). Subgroups:	was clearly associated with reduced risk of
time spent sitting during the day, active time, and	endometrial cancer, with active women having
joint active and sitting time. Highest vs. lowest	an approximately 30% lower risk than inactive
level of recreational PA compared in relationship	women. Owing to recent interest in sedentary
to the outcome.	behaviour, we further investigated sitting time
Measures Steps: No	in relation to endometrial cancer risk using data
Measures Bouts: No	from the NIH-AARP Diet and Health Study. We
Examines HIIT: No	found that, independent of the level of
Outcomes Addressed: Incidence of endometrial	moderate-vigorous physical activity, greater
cancer, presented as relative risk.	sitting time was associated with increased
Examine Cardiorespiratory Fitness as Outcome:	endometrial cancer risk. Thus, limiting time in
No	sedentary behaviours may complement
	increasing level of moderate-vigorous physical
	activity as a means of reducing endometrial
	cancer risk. Taken together with the established
	biological plausibility of this relation, the totality
	of evidence now convincingly indicates that
	physical activity prevents or reduces risk of
	endometrial cancer.
Populations Analyzed: Female, Adults	Author-Stated Funding Source: Intramural
	Research Program of the National Institutes of
	Health, National Cancer Institute

Endometrial Cancer

Meta-Analysis

Citation: Schmid D, Behrens G, Keimling M, Jochem C, Ricci C, Leitzmann M. A systematic review and meta-analysis of physical activity and endometrial cancer risk. *Eur J Epidemiol*. 2015;30(5):397-412. doi:10.1007/s10654-015-0017-6.

001.10.1007/310034-013-0017-0.	
Purpose: To evaluate physical activity (PA)	Abstract: Physical activity is related to decreased
across various domains and intensities, age	endometrial cancer risk. However, a comprehensive
levels, and body mass index groups.	investigation of activity domains, intensities, time
Timeframe: Inception-2014	periods in life, and potential interaction with body
Total # of Studies: 33	mass index is unavailable. We performed a meta-
Exposure Definition: Recent PA: highest vs.	analysis of physical activity and endometrial cancer
lowest category. Stratified analysis of	studies published through October 2014. We
different domains, including recreational	identified 33 eligible studies comprising 19,558
activity, occupational activity, household	endometrial cancer cases. High versus low physical
activity, and walking (walking/biking for	activity was related to reduced endometrial cancer
transportation, walking for recreation, and	risk [relative risk (RR) = 0.80; 95% confidence interval
walking without specification); different	(CI) 0.75-0.85]. The corresponding RRs for
intensities of PA, including light, moderate to	recreational activity, occupational activity, household
vigorous, and vigorous; across different time	activity, and walking were 0.84 (95% CI 0.78-0.91),
periods in life (childhood/adolescence, young	0.81 (95% CI 0.75-0.87), 0.70 (95% CI 0.47-1.02), and
adulthood/midlife, older age). Performed	0.82 (95% CI 0.69-0.97), respectively (Pdifference).
additional analyses restricted to studies that	Walking/biking for transportation, walking for
used metabolic equivalent (MET) hours per	recreation, and walking without specification
week as PA measure, and finally, a nonlinear	revealed summary RRs of 0.70 (95% CI 0.58-0.85),
dose-response meta-analysis of recreational	0.94 (95% CI 0.76-1.17), and 0.88 (95% CI 0.52-1.50),
PA expressed in MET-hours per week based	respectively (Pdifference). Inverse associations were
on the combination of all activities and	noted for light (RR 0.65; 95% Cl 0.49-0.86), moderate
inactivities, including time spent sitting and	to vigorous (RR 0.83; 95 % Cl 0.71-0.96), and vigorous
sleeping.	activity (RR 0.80; 95% CI 0.72-0.90; (Pdifference). A
Measures Steps: No	statistically significant inverse relation was found for
Measures Bouts: No	postmenopausal (RR 0.81; 95% Cl 0.67-0.97), but not
Examines HIIT: No	premenopausal women (RR 0.74; 95% CI 0.49-1.13;
Outcomes Addressed: Endometrial cancer	(Pdifference). Physical activity performed during
risk (relative risk).	childhood/adolescence, young adulthood/midlife,
Examine Cardiorespiratory Fitness as	and older age yielded RRs of 0.94 (95% CI 0.82-1.08),
Outcome: No	0.77 (95% CI 0.58-1.01), and 0.69 (95% CI 0.37-1.28),
	respectively (Pdifference). An inverse relation was
	evident in overweight/obese (RR 0.69; 95% Cl 0.52-
	0.91), but not normal weight women (RR 0.97; 95% Cl
	0.84-1.13; (Pdifference). In conclusion, recreational
	physical activity, occupational physical activity, and
	walking/biking for transportation are related to
	decreased endometrial cancer risk. Inverse
	associations are evident for physical activity of light,
	moderate to vigorous, and vigorous intensities. The
	inverse relation with physical activity is limited to
	women who are overweight or obese.

Populations Analyzed: Normal/Healthy	Author-Stated Funding Source: Not Reported
weight (BMI: 18.5–24.9), Overweight and	
obese, Menopausal status	
(premenopausal/postmenopausal), Female,	
Childhood (birth to 19 years), Adulthood (19	
to 49 years), Older age (50 years or older)	

Esoph	Esophageal and Gastric Cancers		
Meta-Analysis			
Citation: Behrens G, Jochem C, Keimling M, Ricci C, Schmid D, Leitzmann MF. The association between			
physical activity and gastroesophageal cancer: systematic review and meta-analysis. Eur J Epidemiol.			
2014;29(3):151-170. doi:10.1007/s10654-014-9895-2.			
Purpose: 1) To conduct a systematic	Abstract: Physical activity may decrease gastroesophageal		
review and meta-analysis of physical	cancer risk through a reduction of oxidative stress and		
activity in relation to gastroesophageal	decreased chronic inflammation, yet few epidemiologic		
cancers, examining potential variation	studies have been able to report a clear inverse association		
by anatomic site and tumor histology.	between physical activity and gastroesophageal cancer.		
To perform an exploratory dose–	Because no meta-analysis has investigated the relation of		
response meta-analysis in a first	physical activity to gastroesophageal cancer, we conducted		
attempt to produce a physical activity	a comprehensive systematic review and meta-analysis		
recommendation for the primary	according to the PRISMA guidelines based on 24 studies		
prevention of gastroesophageal	with a total of 15,745 cases. When we compared high		
cancers.	versus low physical activity levels and summarized		
Timeframe: Inception-2013	associations according to anatomic site and tumor		
Total # of Studies: 24	histology, risk reductions were evident for esophageal		
Exposure Definition: Physical activity;	adenocarcinoma [relative risk (RR) = 0.79, 95% confidence		
domains (recreational or occupational);	interval (CI) = 0.66-0.94], gastric cardia adenocarcinoma		
low physical activity; high physical	(RR = 0.83, 95% CI = 0.69-0.99) and gastric non-cardia		
activity.	adenocarcinoma (RR = 0.72, 95% CI = 0.62-0.84). The risk		
Measures Steps: No	reduction for esophageal squamous cell carcinoma (RR =		
Measures Bouts: No	0.94, 95% CI = 0.41-2.16) became statistically significant (RR		
Examines HIIT: No	= 0.66, 95% CI = 0.46-0.96) after excluding an influential		
Outcomes Addressed: Risk of	study. The test for heterogeneity by gastroesophageal		
gastroesophageal cancer.	cancer subtype was statistically non-significant (p-		
Examine Cardiorespiratory Fitness as	difference = 0.71). The RR of total gastroesophageal cancer		
Outcome: No	for high versus low physical activity was 0.82 (95% CI =		
	0.74-0.90). A dose-response analysis of frequency of		
	physical activity and total gastroesophageal cancer risk		
	revealed that the greatest risk reduction was achieved		
	among those engaging in moderate to vigorous physical		
	activity five times per week (RR = 0.67, 95% CI = 0.58-0.79).		
	Our results provide support for an inverse relation of		
	physical activity, in particular exercise frequency, to		
	gastroesophageal cancer risk.		
Populations Analyzed: Male, Female,	Author-Stated Funding Source: Not Reported		
Adults			

Esophageal and Gastric Cancers			
Meta-Analysis	Meta-Analysis		
Citation: Chen Y, Yu C, Li Y. Physical activity and risks of esophageal and gastric cancers: a meta-			
analysis. PLoS One. 2014;9(2):e88082. doi:10.1371/journal.pone.0088082.			
Purpose: To provide evidence	Abstract: BACKGROUND: The incidence of esophageal and gastric		
of the relationship between	cancer has been increasing rapidly worldwide in recent years,		
physical activity and gastric	although the reason for this increase is unclear. Here, a statistical		
and esophageal cancer.	synthesis of studies that evaluated the association between physical		
Timeframe: Inception-2013	activity, a well-known protecting factor against death and other		
Total # of Studies: 15	chronic diseases, and the risk of esophageal and gastric cancer was		
Exposure Definition:	performed. METHODS: Potentially suitable studies were identified		
Occupational or recreational	using Medline and Embase. The reference lists of all included articles		
physical activity as measured	and those of several recent reviews were searched manually. Studies		
through questionnaires and	were included if they (1) were published as case-control or cohort		
interviews.	studies evaluating the association between physical activity and risk		
Measures Steps: No	of esophageal or gastric cancer; and (2) reported point estimates		
Measures Bouts: No	(i.e., risk ratios, odds ratios) and measures of variability (i.e., 95%		
Examines HIIT: No	confidence intervals [CIs]) for physical activity and risk of esophageal		
Outcomes Addressed:	or gastric cancer. RESULTS: Fifteen studies were identified (7 cohorts,		
Relative risk of esophageal	8 case-controls; 984 esophageal and 7,087 gastric cancers).		
and gastric cancer.	Collectively, they indicated that the risk of gastric cancer was 13%		
Examine Cardiorespiratory	lower among the most physically active people than among the least		
Fitness as Outcome: No	active people (RR = 0.87, 95% confidence interval [CI] = 0.78 to 0.97)		
	and that of esophageal cancer was 27% lower (RR = 0.73, 95% CI =		
	0.56 to 0.97). CONCLUSIONS: Pooled results from observational		
	studies support a protective effect of physical activity against both		
	esophageal and gastric cancer.		
Populations Analyzed: Male,	Author-Stated Funding Source: National Key Basic Research		
Female, Adults	Development Program, National Science and Technology Support		
	Plan Project, National Natural Science Foundation of China, Zhejiang		
	Provincial Natural Science Foundation of China, Science Foundation		
	of Health Bureau of Zhejiang		

Esophageal, Gastric Cancers

Meta-Analysis

Citation: Singh S, Devanna S, Edakkanambeth Varayil J, Murad MH, Iyer PG. Physical activity is associated with reduced risk of esophageal cancer, particularly esophageal adenocarcinoma: a systematic review and meta-analysis. *BMC Gastroenterol*. 2014;14:101. doi:10.1186/1471-230X-14-101.

101.	
Purpose: To better understand the	Abstract: BACKGROUND: Physical activity has been
relationship between physical activity (PA)	inversely associated with risk of several cancers. We
and esophageal cancer risk, in particular,	performed a systematic review and meta-analysis to
the risk of esophageal adenocarcinoma	evaluate the association between physical activity and
among adults.	risk of esophageal cancer (esophageal adenocarcinoma
Timeframe: 1966–2013	[EAC] and/or esophageal squamous cell carcinoma
Total # of Studies: 9	[ESCC]). METHODS: We conducted a comprehensive
Exposure Definition: PA: various domains	search of bibliographic databases and conference
across studies, including recreational and	proceedings from inception through February 2013 for
occupational. Measurement included self-	observational studies that examined associations
administered questionnaires, interviewer-	between recreational and/or occupational physical
administered questionnaires, and job title.	activity and esophageal cancer risk. Summary adjusted
The dose-response relationship was	odds ratio (OR) estimates with 95% confidence
assessed using the least active group as	intervals (CI) were estimated using the random-effects
reference. We measured the association	model. RESULTS: The analysis included 9 studies (4
between the middle tertile/quartile and	cohort, 5 case-control) reporting 1,871 cases of
reference as well as the association	esophageal cancer among 1,381,844 patients. Meta-
between the highest tertile/quartile and	analysis demonstrated that the risk of esophageal
reference.	cancer was 29% lower among the most physically
Measures Steps: No	active compared to the least physically active subjects
Measures Bouts: No	(OR, 0.71; 95% Cl, 0.57-0.89), with moderate
Examines HIIT: No	heterogeneity (I2 = 47%). On histology-specific analysis,
Outcomes Addressed: Risk of overall	physical activity was associated with a 32% decreased
esophageal cancer and by histological	risk of EAC (4 studies, 503 cases of EAC; OR, 0.68; 95%
subtypes: esophageal squamous cell cancer	CI, 0.55-0.85) with minimal heterogeneity (I2 = 0%).
and esophageal adenocarcinoma.	There were only 3 studies reporting the association
Examine Cardiorespiratory Fitness as	between physical activity and risk of ESCC with
Outcome: No	conflicting results, and the meta-analysis demonstrated
	a null association (OR, 1.10; 95% CI, 0.21-5.64). The
	results were consistent across study design, geographic
	location and study quality, with a non-significant trend
	towards a dose-response relationship. CONCLUSIONS:
	Meta-analysis of published observational studies
	indicates that physical activity may be associated with
	reduced risk of esophageal adenocarcinoma. Lifestyle
	interventions focusing on increasing physical activity
	may decrease the global burden of EAC.
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported

Gastric Cancer

Meta-Analysis

Citation: Abioye AI, Odesanya MO, Abioye AI, Ibrahim NA. Physical activity and risk of gastric cancer: a meta-analysis of observational studies. *Br J Sports Med*. 2015;49(4):224-229. doi:10.1136/bjsports-2013-092778.

2013-092778.	
Purpose: To quantitatively evaluate the	Abstract: BACKGROUND: Studies evaluating the
association of physical activity (PA) with	relationship of physical activity and stomach cancer
gastric malignancies and to assess factors	risk have yielded inconsistent and largely inconclusive
contributing to inconsistency across the	results. We therefore conducted a systematic review
studies.	and meta-analysis of observational studies that
Timeframe: Inception-2012	assessed the relationship between physical activity
Total # of Studies: 11	and risk of gastric cancer. METHODS: Following a
Exposure Definition: The authors employed	standard protocol, we searched medical literature
guidelines from the World Health	databases (PubMed, EMBASE, CINAHL, PsycINFO and
Organization's contemporary	Google Scholar) from inception to July 2012, and
recommendations for PA in adults, a measure	conducted a random effects meta-analysis. RESULTS:
of duration and intensity of PA. A person is	Seven prospective cohorts and four case-control
"sufficiently active" if they engage in 150	studies of physical activity and gastric cancer risk,
minutes of moderate intensity aerobic PA	with 1,535,006 people and 7944 cases of gastric
throughout the week or 75 minutes of	cancer were included. We found a modest protective
vigorous intensity PA, or an equivalent	association between sufficient physical activity and
combination of both. Classified a person as	gastric cancer risk (relative risk: 0.81 (95% Cl 0.69 to
"highly active" if they engage in 300 minutes	0.96); I(2)=68.5%) in the prospective studies and
of moderate intensity exercise or 150	(relative risk: 0.78 (95% CI 0.66 to 0.91); I(2)=0%) in
minutes of vigorous intensity exercise per	case-control studies. The association appeared
week. The "inactive" or "insufficiently active"	weaker in smokers than in non-smokers (p
category included persons whose reported	heterogeneity=0.035). The association may also be
PA was less than that required to meet the	weaker for gastric cardia cancer relative to the distal
sufficiently active category.	non-cardia subtypes. Physical activity type
Measures Steps: No	(recreational or occupational), intake of alcohol, total
Measures Bouts: No	energy intake, consumption of fruits and vegetables
Examines HIIT: No	and infection with Helicobacter pylori had no
Outcomes Addressed: Risk of gastric cancer	influence on the association. The effect measure
Examine Cardiorespiratory Fitness as	from cohort studies (relative risk: 0.82 (95% CI 0.70
Outcome: No	to 0.97); I(2)=61.7%) and case-control studies
	(relative risk: 0.83 (95% CI 0.66 to 1.04); I(2)=49.8%)
	did not differ materially at higher physical activity
	levels. CONCLUSIONS: We conclude that a regular
	physical activity may be protective against stomach
	cancer risk.
Populations Analyzed: Adults, Smoking	Author-Stated Funding Source: Not Reported
status	

	Gastric Cancer
Meta-Analysis	
Citation: Psaltopoulou T, Ntanasis-Stathopo	oulos I, Tzanninis IG, Kantzanou M, Georgiadou D,
Sergentanis TN. Physical activity and gastric	c cancer risk: a systematic review and meta-analysis. Clin J
Sport Med. 2016;26(6):445-464.	
Purpose: To examine the association	Abstract: OBJECTIVE: Physical activity represents a well-
between physical activity (PA) and gastric	established way to prolong the life span; yet, it remains
cancer risk.	an unfulfilled goal for a great part of the population. In
Timeframe: Inception-2015	parallel, the burden of gastric cancer is considerable
Total # of Studies: 22	throughout the globe. In that context, the present meta-
Exposure Definition: PA: included total,	analysis aims to shed light on the association between
leisure/recreational, and occupational.	physical activity and gastric cancer risk. DATA SOURCES:
Compared highest level of PA reported to	Eligible observational studies were sought in PubMed up
lowest level of PA reported. Stratified	to June 01, 2015. In addition, a snowball procedure was
analysis by recreational and occupational	conducted and contact with authors was implemented.
PA.	Separate analyses were performed by type of physical
Measures Steps: No	activity (total; occupational; recreational), study design,
Measures Bouts: No	published/provided data, anatomical site, and study
Examines HIIT: No	location, along with stratification by gender. MAIN
Outcomes Addressed: Pooled relative	RESULTS: Ten cohort studies (7551 incident cases in a
risk or odds ratio of gastric cancer.	total cohort size of 1 541 208 subjects) and 12 case-
Subgroups: location of gastric cancer	control studies (5803 cases and 73 629 controls) were
(cardia or noncardia), geographic	eligible. "Any" type of physical activity was associated
location.	with lower risk of gastric cancer [pooled relative risk (RR)
Examine Cardiorespiratory Fitness as	= 0.81; 95% CI: 0.73 to 0.89], which was reproducible in
Outcome: No	men (pooled RR = 0.87; 95% CI: 0.77-0.99). The protective
	effect was significant in the subgroup analyses of
	published data, noncardia cancer (pooled RR = 0.62 ; 95%
	CI: $0.52-0.75$), and studies stemming from Asia (pooled
	RR = 0.82; 95% CI: 0.74-0.90). CONCLUSIONS: This meta-
	analysis suggests a protective effect of physical activity
	regarding gastric cancer risk, especially in Asian
Donulations Analyzed Mala Formala	populations.
Populations Analyzed: Male, Female, Adults	Author-Stated Funding Source: Not Reported

Meta-Analysis		
Citation: Singh S, Edakkanambeth Varayil J, Devanna S, Murad MH, Iyer PG. Physical activity is		
associated with reduced risk of gastric cancer: a systematic review and meta-analysis. Cancer Prev Res		
(<i>Phila</i>). 2014;7(1):12-22. doi:10.1158/1940-6207.CAPR-13-0282.		
Purpose: To better understand the	Abstract: Physical activity may be associated with	
relationship between physical activity (PA)	reduced risk of gastric cancer. We performed a	
and gastric cancer risk among adults.	systematic review and meta-analysis to evaluate the	
Timeframe: 1966–February 2013	magnitude of the association and the quality of	
Total # of Studies: 15	supporting evidence. After a comprehensive search of	
Exposure Definition: PA: Most physically	bibliographic databases and conference proceedings	
active people as compared with the least	through February 2013 for observational studies that	
physically active people. Subgroup analysis	examined associations between recreational and/or	
measured the impact of recreational and	occupational physical activity and gastric cancer risk,	
occupational activity domains separately.	we identified 16 studies (seven cohort, nine case	
Dose-response analysis measured the	control) reporting 11,111 cases of gastric cancer	
association between the middle	among 1,606,760 patients. Summary adjusted-OR	
tertile/quartile and reference as well as the	estimates with 95% confidence intervals (CI) were	
association between the highest	estimated using the random-effects model. Meta-	
tertile/quartile and reference, using the	analysis demonstrated that the risk of gastric cancer	
least active group as reference.	was 21% lower among the most physically active	
Measures Steps: No	people as compared with the least physically active	
Measures Bouts: No	people (OR = 0.79; 95% Cl, 0.71-0.87) with moderate	
Examines HIIT: No	heterogeneity among studies (I(2) = 55%). This	
Outcomes Addressed: Risk of gastric cancer.	protective effect was seen for gastric cancers in the	
Subgroup analysis assessed subsite-specific	cardia (four studies; OR = 0.80; 95% Cl, 0.63-1.00) and	
impact of PA on gastric cancer (cardia,	distal stomach (five studies; OR = 0.63; 95% CI, 0.52-	
noncardia).	0.76). The effect size was significantly smaller in high-	
Examine Cardiorespiratory Fitness as	quality studies (six studies; OR = 0.86; 95% CI, 0.75-	
Outcome: No	0.99), as compared with low-quality studies (10	
	studies; OR = 0.74; 95% CI, 0.69-0.81). The results	
	were consistent across sex, study quality, study	
	design, and geographic location. In conclusion, meta-	
	analysis of published observational studies indicates	
	that physical activity is associated with reduced risk of	
	gastric cancer. Lifestyle interventions focusing on	
	increasing physical activity may decrease the global	
	burden of gastric cancer, in addition to a myriad of other health benefits.	
Donulations Analyzed: Study location (Asian		
Populations Analyzed: Study location (Asian, Western) Male Female Adults	Author-Stated Funding Source: Takeda Pharmaceuticals	
Western), Male, Female, Adults	FIIdIIIIdleUtitals	

H	ead and Neck Cancers	
Pooled Analysis		
Citation: Nicolotti N, Chuang SC, Cadoni G, et al. Recreational physical activity and risk of head and		
neck cancer: a pooled analysis within the international head and neck cancer epidemiology (INHANCE)		
Consortium. Eur J Epidemiol. 2011;26(8):	619-628. doi:10.1007/s10654-011-9612-3.	
 Purpose: To examine the risk of head and neck cancer associated with recreational physical activity (PA) in a larger population with respect to the studies conducted thus far as part of the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. Total # of Studies: 4 Exposure Definition: Recreational PA: 1 to 2 years prior to cancer diagnosis/interview, and varied across studies. Categories were none/low, moderate, and high, defined differently by each study. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Cases of head and neck cancer: newly diagnosed invasive cancers of the oral cavity, pharynx, oral/pharynx not otherwise specified, or larynx. Estimated in odds ratios. Subgroups: ages (greater than 45 and less than 45 years old), oral cavity, and tobacco smokers. Examine Cardiorespiratory Fitness as Outcome: No 	Abstract: Increasing evidence suggests that physical activity could prevent cancer, but scanty data is available on head and neck cancer (HNC). The aim of our study is to clarify the effect of recreational physical activity (rPA) on HNC. We analyzed data from four case-control studies, including 2,289 HNC cases and 5,580 controls. rPA was classified as: none/low (reference group), moderate and high. We calculated summary Odds Ratios (ORs) by pooling study- specific ORs. Overall, moderate rPA was associated with 22% lower risk of HNC compared to those with none or very low rPA levels [OR = 0.78, 95% Confidence Interval (95% CI): 0.66, 0.91]. Moderate rPA is associated with reduced risk of oral (OR = 0.74, 95% CI: 0.56, 0.97) and pharyngeal cancer (OR = 0.67, 95% CI: 0.53, 0.85), as well as high rPA levels (OR = 0.53, 95% CI: 0.32, 0.88 for oral cavity, OR = 0.58, 95% CI: 0.38, 0.89 for pharynx). High rPA levels, however, is associated with higher risk of laryngeal cancer (OR = 1.73, 95% CI: 1.04, 2.88). Stratified analyses showed that such inverse association between moderate rPA and HNC was more evident among males (OR = 0.75, 95% CI: 0.62, 0.90), subjects >/=45 years (OR = 0.78, 95% CI: 0.66, 0.93), and ever smokers and ever drinkers (OR = 0.72, 95% CI: 0.59, 0.88). High rPA significantly reduces HNC risk among subject >/=45 years (OR = 0.66, 95% CI: 0.48, 0.91). Promoting rPA might be inversely associated with HNC.	
Populations Analyzed: Male, Female, Adults; <45 vs. >45	Author-Stated Funding Source: Not Reported	

Hematologic Cancers

Pooled Analysis

Citation: Aschebrook-Kilfoy B, Cocco P, La Vecchia C, et al. Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sézary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J Natl Cancer Inst Monogr*. 2014;2014(48):98-105. doi:10.1093/incimonographs/lgu008.

doi:10.1093/jncimonographs/lgu008	
Purpose: To investigate the	Abstract: BACKGROUND: Mycosis fungoides and Sezary
associations with lifestyle, medical	syndrome (MF/SS) are rare cutaneous T-cell lymphomas. Their
history, family history, and	etiology is poorly understood. METHODS: A pooled analysis of
occupational risk factors for	324 MF/SS cases and 17217 controls from 14 case-control
mycosis fungiodes and Sezary	studies from Europe, North America, and Australia, as part of
Syndrome.	the International Lymphoma Epidemiology Consortium
Total # of Studies: 14	(InterLymph) Non-Hodgkin Lymphoma (NHL) Subtypes Project,
Exposure Definition: Lifestyle,	was carried out to investigate associations with lifestyle,
medical history, family history,	medical history, family history, and occupational risk factors.
and occupational risk factors.	Multivariate logistic regression models were used to calculate
Measures Steps: No	odds ratios (OR) and 95% confidence intervals (CI). RESULTS:
Measures Bouts: No	We found an increased risk of MF/SS associated with body
Examines HIIT: No	mass index equal to or larger than 30 kg/m(2) (OR = 1.57, 95%
Outcomes Addressed:	CI = 1.03 to 2.40), cigarette smoking for 40 years or more (OR =
Histologically confirmed cases of	1.55, 95% CI = 1.04 to 2.31), eczema (OR = 2.38, 95% CI = 1.73
Mycosis fungoides and Sezary	to 3.29), family history of multiple myeloma (OR = 8.49, 95% CI
syndrome.	= 3.31 to 21.80), and occupation as crop and vegetable farmers
Examine Cardiorespiratory Fitness	(OR = 2.37, 95% CI = 1.14 to 4.92), painters (OR = 3.71, 95% CI =
as Outcome: No	1.94 to 7.07), woodworkers (OR = 2.20, 95% CI = 1.18 to 4.08),
Populations Analyzed:	and general carpenters (OR = 4.07 , 95% CI = 1.54 to 10.75). We
Underweight (BMI: below 18.5),	also found a reduced risk of MF/SS associated with moderate
Normal/Healthy weight (BMI: 18.5–	leisure time physical activity (OR = 0.46, 95% CI = 0.22 to 0.97).
24.9), Overweight (BMI: 25–29.9),	CONCLUSIONS: Our study provided the first detailed analysis of
Obese (BMI: 30 and above),	risk factors for MF/SS and further investigation is needed to
Smoking	confirm these findings in prospective data and in other
	populations.
	Author-Stated Funding Source: The Intramural Research
	Program of the National Cancer Institute/National Institutes of
	Health

Hematologic Cancers

Meta-Analysis

Citation: Jochem C, Leitzmann MF, Keimling M, Schmid D, Behrens G. Physical activity in relation to risk of hematologic cancers: a systematic review and meta-analysis. *Cancer Epidemiol Biomarkers Prev.* 2014;23(5):833-846. doi:10.1158/1055-9965.EPI-13-0699.

Purpose: To quantify the	Abstract: BACKGROUND: Despite the existence of numerous
association between physical	biologic pathways potentially linking increased physical activity
activity (PA) and hematologic	to decreased risk of hematologic cancers, the associations
cancer subtypes.	between physical activity and subtype-specific hematologic
Timeframe: Inception-2013	cancers have not been comprehensively quantified. METHODS:
Total # of Studies: 23	We conducted a systematic review and meta-analysis of
Exposure Definition: Recreational	physical activity in relation to subtype-specific hematologic
PA; dose-response expressed as	cancers. We summarized the data from 23 eligible studies (15
metabolic equivalent task (MET)	cohort and eight case-control studies) and estimated summary
hours or MET minutes per week in	relative risks (RR) and 95% confidence intervals (CI) using
relation to hematologic cancer	random-effects models. RESULTS: When comparing high versus
subtypes. The highest category was	low physical activity levels, the RR for non-Hodgkin lymphoma
defined as 1.5 times the value of	was 0.91 (95% Cl, 0.82-1.00), for Hodgkin lymphoma it was 0.86
the lower bound of that category.	(95% Cl, 0.58-1.26), for leukemia it was 0.97 (95% Cl, 0.84-
The reference level (lowest	1.13), and for multiple myeloma it was 0.86 (95% CI, 0.68-1.09).
category) was set to 0 MET hours.	When focusing on subtypes of non-Hodgkin lymphoma, the RR
Measures Steps: No	for diffuse large B-cell lymphoma was 0.95 (95% CI, 0.80-1.14)
Measures Bouts: No	and for follicular lymphoma it was 1.01 (95% CI, 0.83-1.22). In
Examines HIIT: No	an exploratory analysis combining all hematologic cancers, high
Outcomes Addressed: Risk of	versus low physical activity levels yielded a statistically
hematologic cancer subtypes.	significant RR of 0.93 (95% CI, 0.88-0.99). CONCLUSIONS:
Examine Cardiorespiratory Fitness	Physical activity showed statistically nonsignificant associations
as Outcome: No	with risks of non-Hodgkin lymphoma, Hodgkin lymphoma,
	multiple myeloma, and leukemia. These findings may not
	represent a true lack of associations given the variation in high
	versus low physical activity definitions, the quality of physical
	activity assessments, and the variability in hematologic cancer
	classification schemes in individual studies. IMPACT: Physical
	activity is unrelated to risks of subtype-specific hematologic
	cancers.
Populations Analyzed: Male,	Author-Stated Funding Source: Not Reported
Female, Adults	

Hematologic Cancers

Meta-Analysis

Citation: Vermaete NV, Wolter P, Verhoef GE, et al. Physical activity and risk of lymphoma: a metaanalysis. *Cancer Epidemiol Biomarkers Prev*. 2013;22(7):1173-1184. doi:10.1158/1055-9965.EPI-13-0182.

Dumperer Televisiens the literature	Abstract, DAGKCROUND, Deviced activity has a wrote stive offerst
Purpose: To explore the literature	Abstract: BACKGROUND: Physical activity has a protective effect
on the relationship between	on some types of cancer. The aim of the present meta-analysis
physical activity (PA) and risk of	was to explore the literature on the association between
lymphoma among adults.	physical activity and risk of lymphoma. METHODS: A meta-
Timeframe: Inception-2013	analysis was conducted for cohort and case-control studies
Total # of Studies: 12	examining the association between self-reported physical
Exposure Definition: PA: The	activity and risk of lymphoma. Depending on statistical
highest vs. lowest categories of PA	heterogeneity, a random or fixed effects model was used to
assessed using any measure.	estimate the summary OR and corresponding 95% confidence
Subanalysis by PA domain	interval (CI). RESULTS: Seven case-control studies and 5 cohort
(recreational, occupational).	studies were included. When data from both study designs were
Measures Steps: No	combined, no significant influence of physical activity on risk of
Measures Bouts: No	lymphoma was found (pooled OR = 0.90; 95% CI: 0.79-1.02; P =
Examines HIIT: No	0.10). Subgroup analysis revealed a significant protective
Outcomes Addressed: Risk of	influence of physical activity on risk of lymphoma in case-control
lymphoma. Subanalysis by type of	studies (pooled OR = 0.81; 95% CI: 0.68-0.96; P = 0.02). In
lymphoma (Hodgkin lymphoma	contrast, cohort studies, which have a higher level of evidence
and non-Hodgkin lymphoma).	than case-control studies, confirm the results of the primary
Examine Cardiorespiratory Fitness	meta-analysis (pooled OR = 1.02; 95% Cl: 0.88-1.19; P = 0.76). A
as Outcome: No	subsequent subgroup analysis found no significant differences
	between results for Hodgkin lymphoma and non-Hodgkin
	lymphoma (chi(2) = 0.16; P = 0.69), nor between results for
	recreational and occupational activities (chi(2) = 1.01; P = 0.31).
	CONCLUSIONS: Epidemiologic research indicates no significant
	influence of physical activity on risk of lymphoma. IMPACT:
	Future research should examine the association between
	sedentary behavior and risk of lymphoma and investigate the
	dose-response and timing effect of physical activity on risk of
	lymphoma.
Populations Analyzed: Adults	Author-Stated Funding Source: Research Foundation Flanders

Lung Cancer

Meta-Analysis

Citation: Brenner DR, Yannitsos DH, Farris MS, Johansson M, Friedenreich CM. Leisure-time physical activity and lung cancer risk: a systematic review and meta-analysis. *Lung Cancer*. 2016;95:17-27. doi:10.1016/j.lungcan.2016.01.021.

u01.10.1010/j.lungca11.2010.01.021.	
Purpose: To assess the association	Abstract: OBJECTIVES: We conducted a systematic review
between recreational physical activity	and meta-analysis of the association between recreational
(PA) and lung cancer risk.	physical activity and lung cancer risk to update previous
Timeframe: Inception-2015	analyses and to examine population subgroups of interest
Total # of Studies: 28	defined by smoking status and histology. MATERIALS AND
Exposure Definition: Recreational PA	METHODS: We searched the PubMed database for studies
was characterized/measured in four	up to May 2015. Individual study characteristics were
ways: ≥150 minutes of moderate PA per	abstracted including study design, number of cases,
week or ≥75 minutes of vigorous PA per	assessment of recreational physical activity and type and
week (World Health Organization	level of adjustment for confounding factors. Combined
recommendation); subjective measures	effect estimates were calculated for the overall
provided by study participants, where	associations and across subgroups of interest. RESULTS:
levels of PA were classified as high vs.	We identified 28 studies that were eligible for inclusion in
low; frequency of recreational PA,	the meta-analysis. The overall analysis indicated an
estimated as the number of times per	inverse association between recreational physical activity
week participants engaged in	and lung cancer risk (Relative Risk (RR), 0.76; 95%
recreational PA; and regular	Confidence Interval (CI), 0.69-0.85, p-value: <0.001).
participation in sports.	Similar inverse associations with risk were also noted for
Measures Steps: No	all evaluated histological subtypes, including
Measures Bouts: No	adenocarcinoma (RR, 0.80; 95% CI, 0.72-0.88), squamous
Examines HIIT: No	(RR, 0.80; 95% CI, 0.71-0.90) and small cell (RR, 0.79; 95%
Outcomes Addressed: Relative risk of	Cl, 0.66-0.94). When we examined effects by smoking
lung cancer mortality.	status, inverse associations between recreational physical
Examine Cardiorespiratory Fitness as	activity and lung cancer risk were observed among former
Outcome: No	(RR, 0.77; 95% CI, 0.69-0.85) and current smokers (RR,
	0.77; 95% Cl, 0.72-0.83), but not among never smokers
	(RR, 0.96; 95% Cl, 0.79-1.18). CONCLUSION: Results from
	this meta-analysis suggest that regular recreational
	physical activity may be associated with reduced risk of
	lung cancer. Only four studies examining never smokers
	were identified, suggesting the need for additional
	research in this population.
Populations Analyzed: Adults, Smoking	Author-Stated Funding Source: Alberta InnovatesHealth
status, Male, Female	Solutions Health Senior Scholar Award, Alberta Cancer
	Foundation, Canadian Cancer Society Research Institute
	Capacity Development in Prevention Award

Lung Cancer

Meta-Analysis

Citation: Buffart LM, Singh AS, van Loon EC, Vermeulen HI, Brug J, Chinapaw MJ. Physical activity and the risk of developing lung cancer among smokers: a meta-analysis. *J Sci Med Sport*. 2014;17(1):67-71. doi:10.1016/j.jsams.2013.02.015.

.,,,	
Purpose: To investigate the	Abstract: OBJECTIVE: To investigate the relationship between
relationship between physical	physical activity and lung cancer among smokers and whether this
activity (PA) and lung cancer in	relationship differed according to physical activity intensity,
smokers.	smoking status, and gender. DESIGN: Meta-analysis. METHODS: A
Timeframe: Inception-2011	computerized bibliographical search was conducted in five
Total # of Studies: 8	databases. Study inclusion criteria were: (i) the study population
Exposure Definition: PA was	was not diagnosed with lung cancer at baseline; (ii) the study
measured using self-reported	provided information concerning the effect size of physical activity
questionnaires. PA levels were	on the risk of developing lung cancer in smokers; and (iii) the
defined as moderate, moderate	study distinguished different physical activity intensity levels. Two
to high, and high, compared to	authors independently extracted data and assessed the
the lowest PA, i.e., reference	methodological quality. Pooled rate ratios (RR) were calculated for
category.	all data, and for subgroups of physical activity intensity, smoking
Measures Steps: No	status, and gender. RESULTS: Pooled RRs of 7 cohort studies
Measures Bouts: No	showed that physical activity was associated with a reduced risk of
Examines HIIT: No	lung cancer in smokers (RR=0.82, 95% CI=0.77; 0.87). We did not
Outcomes Addressed: Rate ratio	find clear dose-response relationship regarding exercise or
(risk) of developing lung cancer.	smoking intensity, i.e. high levels of physical activity did not show
Examine Cardiorespiratory	a higher risk reduction than moderate physical activity levels, and
Fitness as Outcome: No	the association between physical activity and risk reduction did
	not differ between heavy and light smokers. The reduced risk
	associated with physical activity was greater in women than in
	men (p=0.03), but this finding was based on only one study that
	reported data on women. CONCLUSIONS: Results of this meta-
	analysis indicate that leisure time physical activity is associated
	with reduced risk of developing lung cancer among smokers.
	Future studies should provide insight into a potential dose-
	response relationship, and should use reliable and valid physical
	activity measurements.
Populations Analyzed: Adults,	Author-Stated Funding Source: EMGO Institute for Health and
Smoking status, Male, Female	Care Research; Dutch Cancer Society

Lung Cancer	
Meta-Analysis	
Citation: Schmid D, Ricci C, Behrens G, Leitzm	ann MF. Does smoking influence the physical activity
and lung cancer relation? A systematic review and meta-analysis. <i>Eur J Epidemiol</i> . 2016;31(12):1173-	
1190. doi:10.1007/s10654-016-0186-y.	
	Abstract: Research suggests an inverse association between physical activity and lung cancer. However, whether the relation is modified by degree of smoking adjustment has not been summarized. We conducted a meta-analysis of physical activity and lung cancer focusing on evaluating whether smoking status and the degree of smoking adjustment influenced the association. Comparing high versus low physical activity levels from 25 observational studies yielded a lung cancer summary relative risk (RR) of 0.79 [95 % confidence interval (CI) = 0.72-0.87], with RRs of 0.87 (95 % CI = 0.80-0.94) for cohort studies and 0.57 (95 % CI = 0.46-0.71) for case-control studies. In further analyses restricted to cohort studies, physical activity was inversely related to lung cancer among former smokers (RR = 0.68, 95 % CI = 0.51-0.90) and current smokers (RR = 0.80, 95 % CI = 0.70-0.90), whereas the association was null among never smokers (RR = 1.05, 95 % CI = 0.78-1.40, p interaction = 0.26). The degree of smoking adjustment did not modify the association (p interaction = 0.73). Physical activity was inversely associated with lung cancer among former and current smokers. Although the physical activity and lung cancer relation was not modified by smoking status or degree of smoking adjustment, residual
	confounding by smoking remains a possible
	explanation for the relations observed.
Populations Analyzed: Adults, Smoking	Author-Stated Funding Source: Not Reported
status, Male, Female	

	Lung Cancer	
Meta-Analysis		
Citation: Sun JY, Shi L, Gao XD, Xu SF. Physical activity and risk of lung cancer: a meta-analysis of		
prospective cohort studies. Asian Pac J Ca	ncer Prev. 2012;13(7):3143-3147.	
Purpose: To update available evidence	Abstract: BACKGROUND: Previous studies investigating	
on any association of physical activity	the association of physical activity with risk of lung cancer	
(PA) with risk of lung cancer.	reported conflicting results. In order to update and	
Timeframe: Inception-2012	improve available evidence on any link, a meta-analysis	
Total # of Studies: 14	was performed. METHOD: We searched the PubMed	
Exposure Definition: PA: Three levels of	database for prospective cohort studies investigating the	
PA: high, medium, and low. The lowest	relation of physical activity with risk of lung cancer. The	
category was defined as low-level PA	pooled relative risk (RR) with its 95% confidence intervals	
(reference group), the highest as high	(95%CI) was used to assess the association. RESULTS: We	
level of PA. Categories in between were	included 14 prospective studies with a total of 1,644,305	
pooled to represent a medium level of	participants, with 14,074 incident lung cancer cases	
PA.	documented during follow-up. Meta-analysis of all 14	
Measures Steps: No	studies suggested both high and medium levels of physical	
Measures Bouts: No	activity to be associated with decreased risk of lung cancer	
Examines HIIT: No	compared to the reference group with low level of	
Outcomes Addressed: Lung cancer risk	physical activity (for high level, RR = 0.77, 95%Cl 0.73-0.81,	
(relative risk).	P < 0.001; for medium level, RR = 0.87, 95%Cl 0.83-0.90, P	
Examine Cardiorespiratory Fitness as	< 0.001). Subgroup analyses by gender found obvious	
Outcome: No	associations in both men and women. No publication bias	
	was observed. CONCLUSION: Our findings suggest that	
	high and medium levels of physical activity have a	
	beneficial effect on lung cancer by reducing the overall	
	risk of tumour development among both men and	
Denvilations Analyzado Mala, Escuela	women.	
Populations Analyzed: Male, Female,	Author-Stated Funding Source: Not Reported	
Adults		

Lung (Lung Cancer	
Meta-Analysis		
Citation: Zhong S, Ma T, Chen L, et al. Physical activ	rity and risk of lung cancer: a meta-analysis. Clin J	
Sport Med. 2016;26(3):173-181. doi:10.1097/JSM.0	00000000000219.	
Purpose: To derive a more precise estimation of	Abstract: OBJECTIVE: Previous studies concerning	
this association between physical activity (PA)	the association between physical activity (PA) and	
and risk of lung cancer.	risk of lung cancer yielded mixed results. We	
Timeframe: Inception-2014	investigated the association by performing a	
Total # of Studies: 18	meta-analysis. DATA SOURCES: Relevant studies	
Exposure Definition: For each study, low-level PA represented the reference category, high-level PA represented the highest category, moderate- level PA represented in-between, and moderate- high level of PA represented both low- and moderate-level PA. Compared high level of PA with low PA, moderate level of PA to low PA, and moderate-high level of PA to low PA. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Lung cancer risk (relative risk). Examine Cardiorespiratory Fitness as Outcome: No	were identified by searching PubMed and EMBASE to January 2014. Twelve cohort studies and 6 case-control studies involving 2 468 470 participants and 26 453 cases of lung cancer were selected for meta-analysis. MAIN RESULTS: We calculated the summary relative risk (RR) and 95% confidence intervals (CIs) using random- effects models. The analyses showed that individuals who participated in any amount of PA had an RR of 0.79 (95% CI, 0.73-0.86) for risk of lung cancer. Those who participated in high PA (vs low PA) had an RR of 0.75 (95% CI, 0.68-0.84). Stratifying by study design (case-control and cohort studies), smoking status (current, former, and never smokers), and gender, similar inverse associations were found for all the subgroups except for never smokers subgroup.	
	CONCLUSIONS: Pooled results from observational	
	studies support a protective effect of PA against lung cancer.	
Populations Analyzed: Adults, Smoking status, Male, Female	Author-Stated Funding Source: National Natural Science Foundation of China	

Ovarian Cancer		
Pooled Analysis		
Citation: Cannioto R, LaMonte MJ, Risch HA, et al. Chronic recreational physical inactivity and		
epithelial ovarian cancer risk: evidence from the Ovarian Cancer Association Consortium. Cancer		
Epidemiol Biomarkers Prev. 2016	5;25(7):1114-1124. doi:10.1158/1055-9965.EPI-15-1330.	
Purpose: To evaluate the	Abstract: BACKGROUND: Despite a large body of literature	
association between physical	evaluating the association between recreational physical activity	
inactivity exposure and	and epithelial ovarian cancer (EOC) risk, the extant evidence is	
epithelial ovarian cancer risk	inconclusive, and little is known about the independent association	
overall.	between recreational physical inactivity and EOC risk. We conducted	
Total # of Studies: 9	a pooled analysis of nine studies from the Ovarian Cancer	
Exposure Definition: Recreational physical inactivity defined as engaging in no regular, weekly moderate-to- vigorous intensity recreational activity, as assessed by questionnaires. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Odds ratio of epithelial ovarian cancer risk. Examine Cardiorespiratory Fitness as Outcome: No	Association Consortium to investigate the association between chronic recreational physical inactivity and EOC risk. METHODS: In accordance with the 2008 Physical Activity Guidelines for Americans, women reporting no regular, weekly recreational physical activity were classified as inactive. Multivariable logistic regression was utilized to estimate the ORs and 95% confidence intervals (CI) for the association between inactivity and EOC risk overall and by subgroups based upon histotype, menopausal status, race, and body mass index. RESULTS: The current analysis included data from 8,309 EOC patients and 12,612 controls. We observed a significant positive association between inactivity and EOC risk (OR = 1.34; 95% CI, 1.14-1.57), and similar associations were observed for each histotype. CONCLUSIONS: In this large pooled analysis examining the association between recreational physical inactivity and EOC risk, we observed consistent evidence of an association between chronic inactivity and all EOC histotypes. IMPACT: These data add to the growing body of evidence suggesting that inactivity is an independent risk factor for cancer. If the apparent association between inactivity and EOC risk is substantiated, additional work via targeted interventions should be pursued to characterize the dose of activity required to mitigate the risk of this highly fatal disease. Cancer Epidemiol Biomarkers Prev; 25(7); 1114-24. (c)2016 AACR.	
Populations Analyzed:	Author-Stated Funding Source: U.S. Army Medical Research and	
Underweight (BMI: below	Materiel Command; National Health & Medical Research Council of	
18.5), Normal/Healthy weight	Australia; Cancer Councils of New South Wales, Victoria,	
(BMI: 18.5–24.9), Overweight	Queensland, South Australia, and Tasmania; Cancer Foundation of	
and obese, Female, Adults	Western Australia, National Health and Medical Research Council of Australia	

Ovarian Cancer

Meta-Analysis

Citation: Zhong S, Chen L, Lv M, Ma T, Zhang X, Zhao J. Nonoccupational physical activity and risk of ovarian cancer: a meta-analysis. *Tumour Biol*. 2014;35(11):11065-11073. doi:10.1007/s13277-014-2385-z.

Purpose: To derive a more precise estimation of	Abstract: Previous studies concerning the
the association between nonoccupational	association between nonoccupational physical
physical activity (PA) and risk of ovarian cancer.	activity (PA) and risk of ovarian cancer yielded
Timeframe: 1984–June 2014	mixed results. We investigated the association by
Total # of Studies: 19	performing a meta-analysis. Relevant studies
Exposure Definition: For each study, low-level PA	were identified by searching PubMed and
represented the reference category, high-level PA	EMBASE to June 2014. We calculated the
represented the highest category, moderate-level	summary relative risks (RRs) and 95% confidence
PA represented categories between the reference	intervals (CIs) using random-effects models. The
category and the highest category, and moderate-	dose-response relationship was assessed by
high level of PA represented all categories except	restricted cubic spline model and multivariate
the reference category. Compared high level of	random-effect meta-regression. Nine cohort
PA with low level PA, moderate level PA to low	studies and ten case-control studies involving
PA, and moderate-high level of PA to low PA	730,703 participants and 9,459 cases of ovarian
(nonoccupational). Dose-response meta-analysis	cancer were selected for meta-analysis. The
was performed at the 25th, 50th, and 75th	analyses showed that individuals who
percentiles of levels of PA (metabolic equivalent	participated in any amount of nonoccupational
hours/week and hours/week).	PA had a RR of 0.92 (95% CI = 0.84-1.00) for risk
Measures Steps: No	of ovarian cancer. Those who participated in high
Measures Bouts: No	or moderate nonoccupational PA had a RR of
Examines HIIT: No	ovarian cancer risk of 0.89 (95% Cl = 0.79-1.01)
Outcomes Addressed: Risk of ovarian cancer	and 0.91 (95% CI = 0.85-0.99), respectively.
(relative risk). Subanalysis by cancer subtype	Stratifying by study design and cancer subtype
(borderline or invasive).	(borderline and invasive tumors), inverse
Examine Cardiorespiratory Fitness as Outcome:	association was only found in case-control
No	studies. A linear but not significant dose-
	response relationship was found between
	nonoccupational PA and ovarian cancer risk. In
	conclusion, a weak inverse association exists
	between nonoccupational PA and the risk of
	ovarian cancer. Regarding the significant
	heterogeneity among included studies,
	confirmation in further prospective cohort
	studies with more accurate assessment of PA
	level is essential.
Populations Analyzed: Female	Author-Stated Funding Source: National Natural
	Science Foundation of China

	Pancreatic Cancer		
Systematic Review	Systematic Review		
Citation: Bao Y, Michaud DS. Physica	Citation: Bao Y, Michaud DS. Physical activity and pancreatic cancer risk: a systematic review. <i>Cancer</i>		
Epidemiol Biomarkers Prev. 2008;17	(10):2671-2682. doi:10.1158/1055-9965.EPI-08-0488.		
Purpose: To evaluate the	Abstract: BACKGROUND: Physical activity has been associated		
association between physical	with a lower risk for pancreatic cancer in several studies, but the		
activity (PA) and pancreatic cancer	overall epidemiologic evidence is not consistent. We therefore		
risk.	did a systematic review to evaluate the association between		
Timeframe: 1966–April 2008	physical activity and pancreatic cancer risk. METHODS: We		
Total # of Studies: 18	searched MEDLINE and EMBASE through April 2008 and		
Exposure Definition: PA: Total PA,	examined the reference lists of the retrieved articles. We		
occupational PA, leisure-time PA	excluded studies that relied on job titles as surrogate measures		
(metabolic equivalents), transport	for physical activity. We used a random-effects model to pool		
PA, light PA, moderate PA, and	study-specific risk estimates comparing the highest versus the		
vigorous PA.	lowest category of physical activity. RESULTS: Total physical		
Measures Steps: No	activity (occupational and leisure time) was not significantly		
Measures Bouts: No	associated with risk for pancreatic cancer [4 prospective studies;		
Examines HIIT: No	summary relative risk, 0.76, 95% confidence interval (95% CI),		
Outcomes Addressed: Risk of	0.53-1.09]. A decreased risk for pancreatic cancer was observed		
pancreatic cancer.	for occupational physical activity (3 prospective studies; relative		
Examine Cardiorespiratory Fitness	risk, 0.75; 95% Cl, 0.58-0.96) but not for leisure-time physical		
as Outcome: No	activity (14 prospective studies; relative risk, 0.94; 95% CI, 0.83-		
	1.05). No association was found with light physical activity (2		
	prospective studies; relative risk, 1.01; 95% CI, 0.77-1.34),		
	moderate physical activity (6 prospective studies; relative risk,		
	0.83; 95% CI, 0.58-1.18), or vigorous physical activity (7		
	prospective studies; relative risk, 0.94; 95% Cl, 0.80-1.12).		
	CONCLUSIONS: This systematic review does not provide strong		
	evidence for an association between physical activity and risk		
	for pancreatic cancer.		
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported		

Pancreatic Cancer

Meta-Analysis

Citation: Behrens G, Jochem C, Schmid D, Keimling M, Ricci C, Leitzmann MF. Physical activity and risk of pancreatic cancer: a systematic review and meta-analysis. *Eur J Epidemiol*. 2015;30(4):279-298. doi:10.1007/s10654-015-0014-9.

401.10.1007/31003 1 013 0011 3.	
Purpose: To examine the association between any type of physical activity (PA) and pancreatic cancer, with a focus on exploring whether the relation is dependent on smoking status or body mass index group. Timeframe: Inception–2014 Total # of Studies: 30 Exposure Definition: PA; consistent PA over time Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Pancreatic cancer incidence. Examine Cardiorespiratory Fitness as Outcome: No	Abstract: Physical activity may prevent pancreatic cancer by regulating body weight and decreasing insulin resistance, DNA damage, and chronic inflammation. Previous meta-analyses found inconsistent evidence for a protective effect of physical activity on pancreatic cancer but those studies did not investigate whether the association between physical activity and pancreatic cancer varies by smoking status, body mass index (BMI), or level of consistency of physical activity over time. To address these issues, we conducted an updated meta-analysis following the PRISMA guidelines among 30 distinct studies with a total of 10,501 pancreatic cancer cases. Random effects meta-analysis of cohort studies revealed a weak, statistically significant reduction in pancreatic cancer risk for high versus low levels of physical activity (relative risk (RR) 0.93, 95 % confidence interval (CI) 0.88-0.98). By comparison, case-control studies yielded a stronger, statistically significant risk reduction (RR 0.78, 95 % CI 0.66-0.94; p-difference by study design = 0.07). When focusing on cohort studies, physical activity summary risk estimates appeared to be more pronounced for consistent physical activity over time (RR 0.86, 95 % CI 0.76-0.97) than for recent past physical activity (RR 0.95, 95 % CI 0.90-1.01) or distant past physical activity (RR 0.95, 95 % CI 0.79-1.15, p-difference by timing in life of physical activity is not strongly associated with pancreatic cancer risk, and the relation is not modified by smoking status or BMI. In conclusion, physical activity is not strongly associated with pancreatic cancer risk, and the relation is not modified by smoking status or BMI level. While overall findings were weak, we did find some suggestion of potential pancreatic cancer risk reduction with consistent physical activity over time.
	summary risk estimates did not differ by smoking status or BMI. In conclusion, physical activity is not strongly associated with pancreatic cancer risk, and the relation is not modified by smoking status or BMI level. While overall findings were weak,
Populations Analyzed: Males, Females, Normal/Healthy weight (BMI: 18.5–24.9), Overweight and obese, Smoking exposure	Author-Stated Funding Source: Not Reported
(high/low), Study location (North America, Europe, Asia)	

Pancreatic Cancer

Meta-Analysis

Citation: Farris MS, Mosli MH, McFadden AA, Friedenreich CM, Brenner DR. The association between leisure time physical activity and pancreatic cancer risk in adults: a systematic review and meta-analysis. *Cancer Epidemiol Biomarkers Prev*. 2015;24(10):1462-1473. doi:10.1158/1055-9965.EPI-15-0301.

Purpose: To investigate the association between leisure time physical activity (LTPA) and risk of pancreatic cancer. An update from previous analyses to examine subgroups of interest and potential sources of heterogeneity.

Timeframe: Inception–2015

Total # of Studies: 26

Exposure Definition: Assessment of LTPA into 3 subgroups: lifetime LTPA (LTPA over the participant's lifetime or several decades [>30 years] prior to study recruitment), past year LTPA, and 2–10 past years LTPA, as well as the type/intensity of activity. The type/intensity was separated into 5 subgroups based on the measures used in the different included studies: meeting World Health Organization Recommendations for PA and Health (>150 minutes moderate PA per week or >75 minutes of vigorous PA per week), quartiles/quintiles representing multiple levels of LTPA, low vs. high, frequency (times), and sports participation. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: The incidence of pancreatic cancer was assessed on the basis of the method used to confirm pancreatic cancer diagnosis. In studies, pancreatic cancer diagnosis was collected through either pathology reports, International Classification of Disease (ICD) codes, cancer registry, a combination of methods or subjective measures such as death certificates. **Examine Cardiorespiratory Fitness as** Outcome: No Populations Analyzed: Male, Female, Adults (<50, 50-60, and >60)

Abstract: We conducted a meta-analysis of the association between leisure time physical activity (LTPA) and risk of pancreatic cancer to update previous analyses in light of newly published studies, to examine subgroups of interest and potential sources of heterogeneity. We searched the PubMed and MEDLINE databases for studies until February 2015. Study information was collected using a standardized form to abstract relevant data on study design, number of cases, participant and study characteristics, assessment of LTPA, risk estimates, and adjustments for confounding by two independent abstractors. We used random-effects models to pool estimates from included studies of lowest versus highest comparison of LTPA. The search identified 26 studies eligible for inclusion into the meta-analysis. The combined summary risk estimate was [relative risk (RR), 0.89; 95% confidence interval (CI), 0.82-0.96]. There was evidence of heterogeneity across studies (I(2) = 22.1%, Pheterogeneity = 0.130). Some of the heterogeneity could be explained by study design, with stronger protective effects observed among case-control studies (RR, 0.69; 95% CI, 0.59-0.81) compared with cohort studies (RR, 0.96; 95% CI, 0.91-1.02). Across study designs, age of population was a source of heterogeneity, with stronger effects observed among younger (<50 years) populations. The present meta-analysis supports a protective association between LTPA and pancreatic cancer with an 11% risk reduction observed. LTPA appears to have the strongest effect among young populations. Additional investigations are needed to provide insights regarding the impact of LTPA in healthy adult populations, to reduce the risk of pancreatic cancer and encourage increases in LTPA.

Author-Stated Funding Source: Alberta Innovates Health Solutions Health Senior Scholar Award and Alberta Cancer Foundation Weekend to End Women's Cancers Breast Cancer Chair

Pancreatic Cancer

Meta-Analysis

Citation: O'Rorke MA, Cantwell MM, Cardwell CR, Mulholland HG, Murray LJ. Can physical activity modulate pancreatic cancer risk? A systematic review and meta-analysis. *Int J Cancer*. 2010;126(12):2957-2968. doi:10.1002/ijc.24997.

2010)120(12)12997 29001 0011011002	
Purpose: To examine associations	Abstract: Numerous epidemiological studies have examined
between physical activity (PA) and	the association between physical activity and pancreatic
pancreatic cancer.	cancer; however, findings from individual cohorts have largely
Timeframe: Inception-2009	not corroborated a protective effect. Among other plausible
Total # of Studies: 28	mechanisms, physical activity may reduce abdominal fat
Exposure Definition: PA assessed by	depots inducing metabolic improvements in glucose tolerance
total, recreational, and occupational	and insulin sensitivity, thereby potentially attenuating
activity and its intensity, including	pancreatic cancer risk. We performed a systematic review to
walking/cycling; in studies with two	examine associations between physical activity and pancreatic
levels, they compared the highest to	cancer. Six electronic databases were searched from their
the lowest level of PA; subgroups by	inception through July 2009, including MEDLINE and EMBASE,
total, occupational, recreational,	seeking observational studies examining any physical activity
transport, light, moderate, and	measure with pancreatic cancer incidence/mortality as an
vigorous activity.	outcome. A random effects model was used to pool individual
Measures Steps: No	effect estimates evaluating highest vs. lowest categories of
Measures Bouts: No	activity. Twenty-eight studies were included. Pooled estimates
Examines HIIT: No	indicated a reduction in pancreatic cancer risk with higher
Outcomes Addressed: Risk of	levels of total (five prospective studies, RR: 0.72, 95% CI: 0.52-
pancreatic cancer, assessed by	0.99) and occupational activity (four prospective studies, RR:
relative risk. Subgroups: body mass	0.75, 95% CI: 0.59-0.96). Nonsignificant inverse associations
index and smoking status	were seen between risks and recreational and transport
adjustment in studies.	physical activity. When examining exercise intensity,
Examine Cardiorespiratory Fitness	moderate activity appeared more protective (RR: 0.79, 95% CI:
as Outcome: No	0.52-1.20) than vigorous activity (RR: 0.97, 95% CI: 0.85-1.11),
	but results were not statistically significant and the former
	activity variable incorporated marked heterogeneity. Despite
	indications of an inverse relationship with higher levels of
	work and total activity, there was little evidence of such
	associations with recreational and other activity exposures.
Populations Analyzed: Adults	Author-Stated Funding Source: Department of Employment
	and Learning (DEL) PhD-funded scholarship

Prostate Cancer

Meta-Analysis

Citation: Liu Y, Hu F, Li D, et al. Does physical activity reduce the risk of prostate cancer? A systematic review and meta-analysis. *Eur Urol.* 2011;60(5):1029-1044. doi:10.1016/j.eururo.2011.07.007.

	11;60(5):1029-1044. doi:10.1016/j.eururo.2011.07.007.
Purpose: To determine the	Abstract: CONTEXT: Numerous observational epidemiologic
association between physical activity	studies have evaluated the association between physical
(PA) and risk of prostate cancer.	activity and prostate cancer (PCa); however, the existing
Timeframe: Inception-2011	results are inconsistent. OBJECTIVE: To determine the
Total # of Studies: 43	association between physical activity and risk of PCa.
Exposure Definition: PA:	EVIDENCE ACQUISITION: A systematic search was performed
occupational PA, recreational PA, and	using the Medline, Embase, and Web of Science databases
total PA. PA measures used given	through 15 May 2011 to identify all English-language articles
variability from studies: metabolic	that examined the effect of physical activity on the risk of
equivalent value, frequency of	PCa. This meta-analysis was conducted according to the
sporting activities, and energy	guidelines for the meta-analysis of observational studies in
expenditure of occupational	epidemiology. EVIDENCE SYNTHESIS: This meta-analysis
activities.	consisted of 88,294 cases from 19 eligible cohort studies and
Measures Steps: No	24 eligible case-control studies. When data from both types
Measures Bouts: No	of studies were combined, total physical activity (TPA) was
Examines HIIT: No	significantly associated with a decreased risk of PCa (pooled
Outcomes Addressed: Cancer risk	relative risk [RR]: 0.90; 95% confidence interval [CI], 0.84-
Examine Cardiorespiratory Fitness as	0.95). The pooled RR for occupational physical activity (OPA)
Outcome: No	and recreational physical activity (RPA) were 0.81 (95% CI,
	0.73-0.91) and 0.95 (95% Cl, 0.89-1.00), respectively. Notably,
	for TPA, we observed a significant PCa risk reduction for
	individuals between 20 and 45 yr of age (RR: 0.93; 95% Cl,
	0.89-0.97) and between 45 and 65 yr of age (RR: 0.91; 95% CI,
	0.86-0.97) who performed activities but not for individuals
	<20 yr of age or >65 yr of age. CONCLUSIONS: There appears
	to be an inverse association between physical activity and
	PCa risk, albeit a small one. Given that increasing physical
	activity has numerous other health benefits, men should be
	encouraged to increase their physical activity in both
	occupational and recreational time to improve their overall
	health and potentially decrease their risk of PCa.
Populations Analyzed: Underweight	Author-Stated Funding Source: Not Reported
(BMI: below 18.5), Normal/Healthy	
weight (BMI: 18.5–24.9), Overweight	
(BMI: 25–29.9) and obese (BMI: 30	
and above), European; North	
American; American; Whites; Blacks;	
Canadian; Asia-Pacific; Adults, <20;	
20–45; 45–65; ≥65	

Renal Cancer

Meta-Analysis

Citation: Behrens G, Leitzmann MF. The association between physical activity and renal cancer: systematic review and meta-analysis. *Br J Cancer*. 2013;108(4):798-811. doi:10.1038/bjc.2013.37.

Purpose: To quantify the association	Abstract: BACKGROUND: Physical activity may decrease
between physical activity (PA) and renal	renal cancer risk by reducing obesity, blood pressure,
cancer.	insulin resistance, and lipid peroxidation. Despite plausible
Timeframe: Inception-2012	biologic mechanisms linking increased physical activity to
Total # of Studies: 19	decreased risk for renal cancer, few epidemiologic studies
Exposure Definition: PA; domain	have been able to report a clear inverse association
(recreational, occupational, or total	between physical activity and renal cancer, and no meta-
physical activity); type of PA assessment	analysis is available on the topic. METHODS: We searched
(energy expenditure, physical fitness,	the literature using PubMed and Web of Knowledge to
moderate-to-vigorous PA duration,	identify published non-ecologic epidemiologic studies
moderate-to-vigorous PA frequency, and	quantifying the relationship between physical activity and
qualitative assessments using	renal cancer risk in individuals without a cancer history.
categories, such as "sedentary," "light,"	Following the PRISMA guidelines, we conducted a
"moderate," or "high" physical activity);	systematic review and meta-analysis, including
timing in life of PA (recent PA, past PA,	information from 19 studies based on a total of 2 327 322
or consistent PA over time).	subjects and 10 756 cases. The methodologic quality of
Measures Steps: No	the studies was examined using a comprehensive scoring
Measures Bouts: No	system. RESULTS: Comparing high vs low levels of physical
Examines HIIT: No	activity, we observed an inverse association between
Outcomes Addressed: Renal cancer	physical activity and renal cancer risk (summary relative
Examine Cardiorespiratory Fitness as	risk (RR) from random-effects meta-analysis=0.88; 95%
Outcome: No	confidence interval (CI)=0.79-0.97). Summarising risk
	estimates from high-quality studies strengthened the
	inverse association between physical activity and renal
	cancer risk (RR=0.78; 95% CI=0.66-0.92). Effect
	modification by adiposity, hypertension, type 2 diabetes,
	smoking, gender, or geographic region was not observed.
	CONCLUSION: Our comprehensive meta-analysis provides
	strong support for an inverse relation of physical activity
	to renal cancer risk. Future high-quality studies are
	required to discern which specific types, intensities,
	frequencies, and durations of physical activity are needed
	for renal cancer risk reduction.
Populations Analyzed: Male, Female,	Author-Stated Funding Source: Not Reported
Adults	

Thyroid Cancer

Pooled Analysis

Citation: Kitahara CM, Platz EA, Beane Freeman LE, et al. Physical activity, diabetes, and thyroid cancer risk: a pooled analysis of five prospective studies. *Cancer Causes Control*. 2012;23(3):463-471. doi:10.1007/s10552-012-9896-y.

Purpose: To examine the associations of self-reported physical activity (PA) and diabetes history with thyroid cancer risk. Total # of Studies: 5 Exposure Definition: PA was defined as the average time spent engaging in vigorous or strenuous leisure time or occupational activity. Data as collected from self-administered questionnaires. Different PA assessment by study. Study subjects were assigned to one of three categories of PA: low, medium, or high based on cohort-specific tertiles. Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Thyroid cancer; participants who were diagnosed with a malignant first primary thyroid neoplasm during follow-up. Cancer information was obtained through various sources: self-report, cancer registry linkage, death certificates, and the National Death Index. Examine Cardiorespiratory Fitness as Outcome: No	Abstract: PURPOSE: Although many studies have linked obesity with increased risk of thyroid cancer, few have investigated the role of obesity-related lifestyle characteristics and medical conditions in the etiology of this disease. We examined the associations of self-reported physical activity and diabetes history with thyroid cancer risk in a large pooled analysis of prospective cohort studies. METHODS: Data from five prospective cohort studies. METHODS: Data from five prospective cohort studies. Hazard ratios (HR) and 95% confidence intervals (CI) for thyroid cancer were estimated using age as the time metric and adjusting for sex, education, race, marital status, cigarette smoking, body mass index, alcohol intake, and cohort. Effect modification by other risk factors (e.g., age, sex, and body mass index) and differences by cancer subtype (e.g., papillary, follicular) were also examined. RESULTS: Over follow-up (median = 10.5 years), 308 men and 510 women were diagnosed with a first primary thyroid cancer. Overall, subjects reporting the greatest amount of physical activity had an increased risk of the disease (HR = 1.18, 95% CI:1.00- 1.39); however, this association was restricted to participants who were overweight/obese (>/=25 kg/m(2); HR = 1.34, 95% CI:1.09-1.64) as opposed to normal-weight (<25 kg/m(2); HR = 0.92, 95% CI:0.69-1.22; P-interaction = 0.03). We found no overall association between self-reported history of diabetes and thyroid cancer risk (HR = 1.08, 95% CI:0.83-1.40). CONCLUSION: Neither physical inactivity nor diabetes history was associated with increased risk of thyroid cancer. While it may have been a chance finding, the possible increased risk associated with greater physical activity warrants further investigation.
Populations Analyzed: Underweight (BMI: below 18.5), Normal/Healthy weight (BMI: 18.5–24.9), Overweight (BMI: 25–29.9) and obese (BMI: 30 and above), Diabetes, Smoking; Alcohol intake, Male, Female, Adults, Education: high school or less, post- high school.	Author-Stated Funding Source: Intramural Research Program of the National Cancer Institute, National Institutes of Health

Thyroid Cancer

Meta-Analysis

Citation: Schmid D, Behrens G, Jochem C, Keimling M, Leitzmann M. Physical activity, diabetes, and risk of thyroid cancer: a systematic review and meta-analysis. *Eur J Epidemiol*. 2013;28(12):945-958. doi:10.1007/s10654-013-9865-0.

401.10.1007/510051015 5005 0.	
Purpose: To summarize thyroid	Abstract: Thyroid cancer incidence has been increasing more
cancer risk estimates comparing	rapidly over time than the occurrence of cancers of other sites,
high vs. low levels of physical	and interest in potential adverse relations of diabetes and lack of
activity (PA), and separately,	physical activity to thyroid cancer risk is accumulating. We
comparing individuals with	conducted a systematic review and meta-analysis of published
diabetes with those without	epidemiologic studies on the relations of physical activity and
diabetes.	diabetes to thyroid cancer according to the Meta-analysis of
Timeframe: Inception-2013	Observational Studies in Epidemiology guidelines. Published
Total # of Studies: 13 (PA=7)	studies were identified through a search in MEDLINE and EMBASE.
Exposure Definition: PA: Total	Random-effects models were used to summarize thyroid cancer
PA was prioritized in this meta-	risk estimates comparing high versus low levels of physical
analysis. [Unspecified] highest	activity, and separately, comparing individuals with diabetes
vs. lowest categories of PA. PA	versus those without diabetes. Meta-regression analyses were
was assessed by interviewer-	performed to evaluate potential effect modification by study
administered questionnaires in 2	design and thyroid cancer risk factors. Information was extracted
studies and by self-administered	from seven studies of physical activity and thyroid cancer and
questionnaires in 5 studies.	from six studies of diabetes and thyroid cancer. The number of
Measures Steps: No	individuals from studies on physical activity was 939,305 (yielding
Measures Bouts: No	2,250 incident thyroid cancer cases) and from studies on diabetes
Examines HIIT: No	it was 960,840 (yielding 1,230 cases). The summary relative risk
Outcomes Addressed: Thyroid	(RR) estimate from cohort and case-control studies combined
cancer risk (relative risk):	indicated no association between physical activity and thyroid
endpoint definition included	cancer (summary RR 1.06, 95 % confidence interval (CI) 0.79-1.42).
both total thyroid cancer cases	Subgroup-analyses revealed a significant positive association
and papillary thyroid cancer	between physical activity and thyroid cancer in cohort studies
cases.	(summary RR 1.28; 95 % CI 1.01-1.63), whereas the relation was
Examine Cardiorespiratory	suggestively inverse in case-control studies (summary RR 0.70; 95
Fitness as Outcome: No	% CI 0.48-1.03; p for heterogeneity = 0.005). Individuals with
	diabetes showed a borderline statistically significant increased risk
	of thyroid cancer compared with those without diabetes
	(summary RR 1.17; 95 % Cl 0.99-1.39). The relations of physical
	activity and diabetes to thyroid cancer were not modified by sex,
	number of adjustment factors, and adjustments for adiposity,
	smoking, and study quality. In this comprehensive systematic
	review and meta-analysis, no significant association between
	physical activity and thyroid cancer was found. Diabetes showed a
	suggestive positive relation with risk of thyroid cancer.
Populations Analyzed: Male,	Author-Stated Funding Source: Not Reported
Female	

Table 3. Existing Systematic Reviews, Meta-Analyses, and Pooled Analyses Quality Assessment Chart

AMSTARExBP: SR/MA		Acababas					
	Abioye, 2015	Aschebro ok-Kilfoy, 2014	Bao, 2008	Behrens, 2015	Behrens, 2014	Behrens, 2013	Boyle, 2012
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	Yes	No	Yes	Yes	Yes	Yes	Yes
Comprehensive literature search performed.	Yes	N/A	Yes	Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	No	N/A	No	No	No	No	No
Search strategy clearly described.	Yes	N/A	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	N/A	No	No	No	No	No
List of studies (included and excluded) provided.	No	N/A	Yes	No	No	No	Yes
Characteristics of included studies provided.	No	Yes	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	No	N/A	Yes	No	No	No
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	No	Partially Yes	Yes	Yes	Yes	Yes
Results depended on study quality, either overall, or in interaction with moderators.	No	N/A	Yes	Yes	Yes	Yes	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	N/A	Yes	Yes	Yes	Yes	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual-level meta-analysis used.	No	No	N/A	No	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	N/A	Yes	Yes	Yes	Yes	Yes
Conflict of interest disclosed.	Yes	No	Yes	No	No	No	No

AMSTARExBP: SR/MA							
	Brenner, 2016	Buffart, 2014	Cannioto, 2016	Chen, 2014	Farris, 2015	Gong, 2016	Harriss, 2009
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Comprehensive literature search performed.	Partially Yes	Yes	N/A	Yes	Yes	N/A	Yes
Duplicate study selection and data extraction performed.	Yes	Yes	N/A	Yes	No	N/A	Yes
Search strategy clearly described.	Yes	Yes	N/A	Yes	Yes	N/A	Yes
Relevant grey literature included in review.	No	No	N/A	No	No	N/A	No
List of studies (included and excluded) provided.	No	No	N/A	No	No	N/A	Yes
Characteristics of included studies provided.	Yes	No	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	No	No	No	Yes	Yes	Yes
Scientific quality (risk of bias) of included studies assessed and documented.	Partially Yes	Yes	Yes	Partially Yes	Yes	Yes	No
Results depended on study quality, either overall, or in interaction with moderators.	Yes	No	Yes	Yes	Yes	Yes	N/A
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	Yes	Yes	Yes	Yes	N/A
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual-level meta-analysis used.	No	No	Yes	No	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	No	N/A	Yes	Yes	N/A	Yes
Conflict of interest disclosed.	No	Yes	Yes	Yes	Yes	Yes	Yes

AMSTARExBP: SR/MA							
	Jochem, 2014	Johnson, 2013	Keimling, 2014	Keum, 2014	Kitahara, 2012	Kyu, 2016	Liu, 2016
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Comprehensive literature search performed.	Partially Yes	No	Yes	Yes	N/A	Yes	Yes
Duplicate study selection and data extraction performed.	No	No	No	Yes	N/A	Yes	No
Search strategy clearly described.	Yes	Yes	Yes	Yes	N/A	Yes	Yes
Relevant grey literature included in review.	No	No	No	No	N/A	No	No
List of studies (included and excluded) provided.	No	No	No	No	N/A	No	No
Characteristics of included studies provided.	Yes	No	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	Yes	No	Yes	Yes	Yes	Yes	Yes
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	No	Yes	Yes	No	Yes	Yes
Results depended on study quality, either overall, or in interaction with moderators.	Yes	N/A	Yes	Yes	N/A	Yes	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	N/A	Yes	Yes	N/A	Yes	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual-level meta-analysis used.	No	No	No	No	Yes	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	Yes	Yes	Yes	N/A	Yes	Yes
Conflict of interest disclosed.	Yes	No	No	No	No	Yes	Yes

AMSTARExBP: SR/MA							
	Liu, 2011	Moore, 2016	Moore, 2010	Neilson, 2016	Nicolotti, 2011	Niederma ier, 2015	O'Rorke, 2010
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	No	Yes	Yes
Population variables defined and considered in methods.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Comprehensive literature search performed.	Yes	N/A	Partially Yes	Yes	N/A	Yes	Yes
Duplicate study selection and data extraction performed.	No	N/A	No	Yes	N/A	Yes	Yes
Search strategy clearly described.	Yes	N/A	Yes	Yes	N/A	Yes	Yes
Relevant grey literature included in review.	No	N/A	No	Yes	N/A	No	No
List of studies (included and excluded) provided.	No	N/A	No	No	N/A	Yes	Yes
Characteristics of included studies provided.	Yes	Yes	No	Yes	Yes	No	Yes
FITT defined and examined in relation to outcome effect sizes.	Yes	No	N/A	Yes	Yes	No	Yes
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	Yes	Yes	No	Partially Yes	Yes
Results depended on study quality, either overall, or in in interaction with moderators.	Yes	Yes	Yes	Yes	N/A	Yes	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	Yes	Yes	N/A	Yes	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	Yes	Yes	Yes	Partially Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual-level meta-analysis used.	No	No	No	No	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	No	Yes	No	Yes	No
Likelihood of publication bias assessed.	Yes	N/A	Yes	Yes	N/A	Yes	Yes
Conflict of interest disclosed.	Yes	Yes	No	Yes	No	Yes	No

AMSTARExBP: SR/MA							
	Pham, 2012	Pizot, 2016	Psaltopou Iou, 2016	Robsahm, 2013	Schmid, 2016	Schmid, 2015	Schmid, 2013
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	No	Yes	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	No	Yes	Yes	Yes	Yes	Yes	Yes
Comprehensive literature search performed.	Yes	Yes	Partially Yes	Partially Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	No	No	Yes	No	No	No	No
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	No	No	No	No	No	No
List of studies (included and excluded) provided.	No	Yes	Yes	No	Yes	Yes	Yes
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	Yes	No	No	No	Yes	No
Scientific quality (risk of bias) of included studies assessed and documented.	No	No	Yes	Partially Yes	Yes	Yes	Yes
Results depended on study quality, either overall, or in interaction with moderators.	N/A	N/A	Yes	Yes	Yes	Yes	Yes
Scientific quality used appropriately in formulating conclusions.	N/A	N/A	Yes	Yes	No	Yes	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	N/A	Yes	Yes	Yes	Yes	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual-level meta-analysis used.	N/A	No	No	No	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	No	Yes	Yes	Yes
Likelihood of publication bias assessed.	No	Yes	Yes	Yes	Yes	Yes	Yes
Conflict of interest disclosed.	Yes	Yes	No	No	No	Yes	Yes

AMSTARExBP: SR/MA								
	Singh, 2014	Singh, 2014	Sun, 2012	Vermaete , 2013	Wolin, 2009	Wu, 2013	Zhong, 2016	Zhong, 2014
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Comprehensive literature search performed.	Yes	Yes	Partially Yes	Yes	Partially Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	Yes	Yes	No	No	No	Yes	Yes	Yes
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	Yes	Yes	No	No	No	No	No	No
List of studies (included and excluded) provided.	Yes	No	No	No	No	Yes	Yes	No
Characteristics of included studies provided.	Yes	Yes	No	Yes	No	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	Yes	Yes	No	No	No	Yes	Yes	Yes
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Results depended on study quality, either overall, or in interaction with moderators.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Individual-level meta- analysis used.	No	No	No	No	No	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Likelihood of publication bias assessed.	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Conflict of interest disclosed.	Yes	Yes	No	Yes	No	Yes	Yes	Yes

High-Quality Existing Reports

Bladder Cancer						
Report: Summary/State of the Science	Report: Summary/State of the Science					
Citation: World Cancer Research Fund Inte	Citation: World Cancer Research Fund International, American Institute for Cancer Research.					
Continuous Update Project Report: Diet, N	utrition, Physical Activity and Bladder Cancer; 2015a.					
http://www.wcrf.org/bladder-cancer-201	5. Accessed October 11, 2017.					
Source/Sponsor: World Cancer	Relevant Conclusions: Evidence for the physical activity					
Research Fund	exposure previously judged as 'limited – no conclusion' in					
Purpose: To analyze global research on	the Second Expert Report remains unchanged after					
how certain lifestyle factors affect the	updating the analyses with new data identified in the					
risk of developing bladder cancer.	Continious Update Project Bladder systematic literature					
Timeframe: January 2006- July 2013	review 2014.					
Exposure Definition: Recreational						
physical activity (8 sstudies), total						
physical activity (1 study).						
Measures Steps: No						
Measures Bouts: No						
Examines HIIT: No						
Outcomes Addressed: Risk of bladder						
cancer						
Examine Cardiorespiratory Fitness as						
Outcome: No						
Populations Analyzed: Not reported	Author-Stated Funding Source: Not reported					

Colon, Rectal Cancers					
Report: Summary/State of the Science					
Citation: World Cancer Research Fund/American Institute for Cancer Research. Continuous Update					
Project Report: Food, Nutrition, Physical Activity, and the	Prevention of Colorectal Cancer.				
http://www.wcrf.org/sites/default/files/Colorectal-Cance	er-2011-Report.pdf. Published 2011.				
Accessed October 11, 2017.					
Source/Sponsor: World Cancer Research Fund	Relevant Conclusions: The evidence that				
Purpose: To provide an updated version of section 7.9,	physical activity protects against colon				
Colon and Rectum, from the Second Expert Report:	cancer is convincing.				
Food, Nutrition, Physical Activity and the Prevention of					
Cancer: a Global Perspective.					
Timeframe: Not reported.					
Exposure Definition: Total physical activity (metabolic					
equivalent [MET] hours/day), recreational physical					
activity (MET hours/week), leisure time physical activity					
(highest versus lowest).					
Measures Steps: No					
Measures Bouts: No					
Examines HIIT: No					
Outcomes Addressed: Risk of colorectal cancer, colon					
cancer, and rectal cancer.					
Examine Cardiorespiratory Fitness as Outcome: No					
Populations Analyzed: Not reported.	Author-Stated Funding Source: Not				
	reported				

Renal Cancer					
Report: Summary/State of the Science					
Citation: World Cancer Research Fund Internation	onal, American Institute for Cancer Research.				
Continuous Update Project Report: Diet, Nutritio	n, Physical Activity and Kidney Cancer; 2015b.				
http://www.wcrf.org/kidney-cancer-2015. Acces	ssed October 11, 2017.				
Source/Sponsor: World Cancer Research Fund	Relevant Conclusions: Evidence for the physical				
Purpose: To analyze worldwide research on	activity exposure, previously judged as 'Limited – no				
how certain lifestyle factors	conclusion' in the Second Expert Report, remains				
affect the risk of developing kidney cancer.	unchanged after updating the analyses with new				
Timeframe: Inception-March 2014	data identified in the Continious Update Project				
Exposure Definition: Physical activity level	Kidney systematic literature review 2015.				
Measures Steps: No					
Measures Bouts: No					
Examines HIIT: No					
Outcomes Addressed: Risk of kidney cancer					
Examine Cardiorespiratory Fitness as					
Outcome: No					
Populations Analyzed: Not reported	Author-Stated Funding Source: Not reported				

C	olon, Rectal Cancers					
Report: Summary/State of the Science						
Citation: World Cancer Research Fund Int	Citation: World Cancer Research Fund International/American Institute for Cancer Research.					
Continuous Update Project Report: Diet, N	lutrition, Physical Activity and Colorectal Cancer.					
http://www.aicr.org/continuous-update-p	project/reports/colorectal-cancer-2017-report.pdf.					
Published 2017. Accessed October 11, 201	17.					
Source/Sponsor: American Institute for	Relevant Conclusions: The evidence is strong and					
Cancer Research	consistently shows significant inverse associations when					
Purpose: To examine the relationship	comparing the highest and lowest levels of total and					
between lifestyle factors and colon	recreational physical activity (PA) and colon cancer					
cancer.	incidence. A significant inverse association was observed					
Timeframe: Not reported	for total PA and colorectal cancer; no significant					
Exposure Definition: Total and	associations were observed for rectal cancer and either					
recreational physical activity.	total or recreational PA when comparing the highest and					
Measures Steps: No	the lowest levels of activity. For recreational PA and colon					
Measures Bouts: No	cancer risk, three published meta-analyses reported					
Examines HIIT: No	inverse associations. There is robust evidence for					
Outcomes Addressed: Incidence, risk,	mechanisms operating in humans. However, dose-					
and mortality of colorectal cancer.	response relationships could not be determined.					
Examine Cardiorespiratory Fitness as						
Outcome: No						
Populations Analyzed: Not reported	Author-Stated Funding Source: World Cancer Research					
	Fund International					

Table 5. High-Quality Existing Reports Quality Assessment Chart

Report Quality Assessment				
	WCRF, 2017	WCRF, 2015a	WCRF, 2015b	WCRF, 2011
Research question(s) or purpose and inclusion/exclusion criteria or scope delineated prior to search.	No	Yes	Yes	Yes
Inclusion criteria permitted grey literature.	No	No	No	No
Comprehensive search performed.	Partially Yes	Partially Yes	Partially Yes	Partially Yes
Scientific quality of sources documented.	Yes	Yes	Yes	Yes
Limitations reported and discussed.	No	No	No	No
Conclusions substantiated by and logically connected to evidence and findings.	Yes	Yes	Yes	Yes
Recommendations for future research provided.	Yes	No	No	No
Recommendations were relevant to the report and supported by evidence, findings, and conclusions.	Yes	Yes	Yes	No
Potential conflicts of interest explained.	No	No	No	No
Reference list provided.	Yes	Yes	Yes	Yes

Appendices

Appendix A: Analytical Framework

<u>Topic Area</u>

Cancer

Systematic Review Questions

What is the relationship between physical activity and specific cancer incidence?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?
- c. Does the relationship vary by specific cancer subtypes?
- d. Is the relationship present in persons at high risk, such as those with familial predisposition to cancer?

Population

Adults, 18 years and older

<u>Exposure</u>

All types and intensities of physical activity, including lifestyle activities/leisure activities

Comparison

Adults who participate in varying levels of physical activity

Endpoint Health Outcomes

Incidence of cancer

Appendix B: Final Search Strategy

Search Strategy: PubMed (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: PubMed; Date of Search: 1/03/2017; 375 results

Set	Search Strategy for Systematic Reviews, Meta-Analyses, and Pooled Analyses
Physical Activity	(("Exercise"[mh] OR "Exercise"[tiab] OR "Physical activity"[tiab] OR "Sedentary
	lifestyle"[mh]) OR (("Aerobic activities"[tiab] OR "Aerobic activity"[tiab] OR
	"Cardiovascular activities"[tiab] OR "Cardiovascular activity"[tiab] OR
	"Endurance activities"[tiab] OR "Endurance activity"[tiab] OR "Energy
	expenditure"[tiab] OR "Resistance training"[tiab] OR "strength training"[tiab]
	OR "Sedentary"[tiab] OR "physical conditioning"[tiab] OR "walking"[tiab]) NOT
	medline[sb]))
Cancer	AND (("neoplasms"[mh]) OR (("Cancer"[tiab] OR "Neoplasm"[tiab] OR
	"Tumor"[tiab] OR "Carcinogenesis"[tiab] OR "Leukemia"[tiab] OR
	"Lymphoma"[tiab] OR "Malignan*"[tiab] OR "Blastoma"[tiab] OR
	"Tumour"[tiab] OR "Melanoma"[tiab] OR "Myeloma"[tiab] OR
	"Carcinoma"[tiab] OR "Neoplasia"[tiab] OR "Sarcoma"[tiab] OR "Tumors"[tiab]
	OR "Tumours"[tiab] OR "Neoplasms"[tiab] OR "Adenosarcoma"[tiab] OR
	"Angiosarcoma"[tiab] OR "Astrocytoma"[tiab] OR "Cholangiocarcinoma"[tiab]
	OR "Chondrosarcoma"[tiab] OR "Craniopharyngioma"[tiab] OR
	"Ependymoma"[tiab] OR "Fibrosarcoma"[tiab] OR "Glioma"[tiab] OR
	"Langerhans Cell Histiocytosis"[tiab] OR "Hodgkin's Disease"[tiab] OR
	"Leiomyosarcoma"[tiab] OR "Medulloblastoma"[tiab] OR "Mesothelioma"[tiab]
	OR "Neuroblastoma"[tiab] OR "Rhabdomyosarcoma"[tiab] OR
	"Osteosarcoma"[tiab]) NOT medline[sb]))
Risk	AND ("risk"[tiab] OR "risks"[tiab] OR "Incidence"[tiab] OR "incident"[tiab] OR
	"incidents"[tiab] OR "risk"[mh] OR "incidence"[mh])
Limit: Publication	AND (systematic[sb] OR meta-analysis[pt] OR "systematic review"[tiab] OR
Type Include	"systematic literature review" [tiab] OR metaanalysis [tiab] OR "meta
Systematic	analysis"[tiab] OR metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled
Reviews, Meta-	analysis"[tiab] OR "pooled analyses"[tiab] OR "pooled data"[tiab])
Analyses, and	
Pooled Analyses	NOT ("commont"[Dublication Tune] OD "editorial"[Dublication Tune])
Limit: Publication	NOT ("comment"[Publication Type] OR "editorial"[Publication Type])
Type Exclude	AND (English[lang])
Limit: Language	AND (English[lang])
Limit: Exclude	NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))
animal only	
Limit: Exclude child	NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT
only	(("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) AND "adult"[Mesh]))

Search Strategy: CINAHL (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

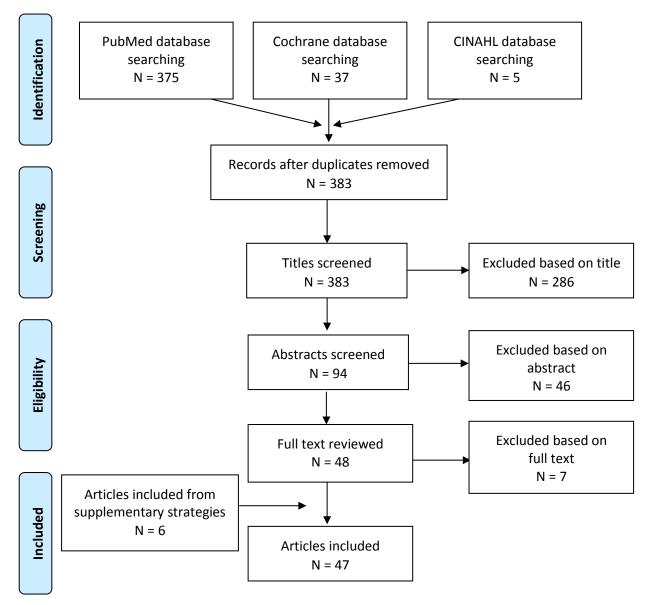
Database: CINAHL; Date of Search: 1/3/2017; 5 results All terms searched in title or abstract

Set	Search Strategy for Systematic Reviews, Meta-Analyses, and Pooled Analyses
Physical Activity	("Aerobic activities" OR "Aerobic activity" OR "Cardiovascular activities" OR "Cardiovascular activity" OR "Endurance activities" OR "Endurance activity" OR "Energy expenditure" OR "Exercise" OR "Physical activity" OR "Resistance training" OR "Sedentary lifestyle" OR "strength training" OR "Sedentary" OR "physical conditioning" OR "walking")
Cancer	AND ("Cancer" OR "Neoplasm" OR "Tumor" OR "Carcinogenesis" OR "Leukemia" OR "Lymphoma" OR "Malignan*" OR "Blastoma" OR "Tumour" OR "Melanoma" OR "Myeloma" OR "Carcinoma" OR "Neoplasia" OR "Sarcoma" OR "Tumors" OR "Tumours" OR "Neoplasms" OR "Adenosarcoma" OR "Angiosarcoma" OR "Astrocytoma" OR "Cholangiocarcinoma" OR "Chondrosarcoma" OR "Craniopharyngioma" OR "Ependymoma" OR "Fibrosarcoma" OR "Glioma" OR "Langerhans Cell Histiocytosis" OR "Hodgkin's Disease" OR "Leiomyosarcoma" OR "Medulloblastoma" OR "Mesothelioma" OR "Neuroblastoma" OR "Rhabdomyosarcoma" OR "Osteosarcoma")
Risk	AND ("risk" OR "risks" OR "incidence" OR "incident" OR "incidents")
Publication Type: Systematic Reviews, Meta- Analyses, and Pooled Analyses	AND ("systematic review" OR "systematic literature review" OR metaanalysis OR "meta analysis" OR metanalyses OR "meta analyses"" OR "pooled analysis" OR "pooled analyses" OR "pooled data")
Limits	2006-present English language Peer reviewed Exclude Medline records Human

Search Strategy: Cochrane (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: Cochrane; Date of Search: 12/5/16; 37 results All terms searched in title, abstract, or keywords

Set	Search Strategy for Systematic Reviews, Meta-Analyses, and Pooled Analyses
Physical Activity	("Aerobic activities" OR "Aerobic activity" OR "Cardiovascular activities" OR
	"Cardiovascular activity" OR "Endurance activities" OR "Endurance activity" OR
	"Energy expenditure" OR "Exercise" OR "Physical activity" OR "Resistance


Set	Search Strategy for Systematic Reviews, Meta-Analyses, and Pooled Analyses
	training" OR "Sedentary lifestyle" OR "strength training" OR "Sedentary" OR
	"physical conditioning" OR "walking")
Cancer	AND
	("Cancer" OR "Neoplasm" OR "Tumor" OR "Carcinogenesis" OR "Leukemia" OR
	"Lymphoma" OR "Malignan*" OR "Blastoma" OR "Tumour" OR "Melanoma" OR
	"Myeloma" OR "Carcinoma" OR "Neoplasia" OR "Sarcoma" OR "Tumors" OR
	"Tumours" OR "Neoplasms" OR "Adenosarcoma" OR "Angiosarcoma" OR
	"Astrocytoma" OR "Cholangiocarcinoma" OR "Chondrosarcoma" OR
	"Craniopharyngioma" OR "Ependymoma" OR "Fibrosarcoma" OR "Glioma" OR
	"Langerhans Cell Histiocytosis" OR "Hodgkin's Disease" OR "Leiomyosarcoma" OR
	"Medulloblastoma" OR "Mesothelioma" OR "Neuroblastoma" OR
	"Rhabdomyosarcoma" OR "Osteosarcoma")
Risk	AND
	("risk" OR "risks" OR "incidence" OR "incident" OR "incidents")
Limits	2006–present
	Word variations not searched
	Cochrane Reviews and Other Reviews

Supplementary Strategies:

At full text review, members of the Cancer Subcommittee suggested relevant reviews that were not captured by the search strategies, as part of expert consultation. One relevant systematic review by <u>Kyu</u> <u>et al¹⁴</u>, one meta-analysis by <u>Wolin et al¹⁶</u>, and four reports by the World Cancer Research Fund^{3, 17, 18, 45} were suggested by the Cancer Subcommittee lead and were included as sources of evidence.

Appendix C: Literature Tree

Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports Literature Tree

Appendix D: Inclusion/Exclusion Criteria

Cancer Subcommittee

What is the relationship between physical activity and specific cancer incidence?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?
- c. Does the relationship vary by specific cancer subtypes?
- d. Is the relationship present in persons at high risk, such as those with familial predisposition to cancer?

Category	Inclusion/Exclusion Criteria	Notes/Rationale
Publication	Include:	
Language	 Studies published with full text in English 	
Publication Status	Include:	
	 Studies published in peer-reviewed journals 	
	• Reports determined to have appropriate suitability	
	and quality by PAGAC (e.g., World Cancer Research	
	Fund, Institute of Medicine)	
	Exclude:	
	• Grey literature, including unpublished data,	
	manuscripts, abstracts, conference proceedings	
Research Type	Include:	
	Original research	
	Meta-analyses	
	Systematic reviews	
	• Reports determined to have appropriate suitability	
	and quality by PAGAC	
Study Subjects	Include:	
	Human subjects	
Age of Study	Include:	
Subjects	 18 years of age and above 	
	Exclude:	
	• Studies with subjects exclusively under 18 years of	
	age	
Date of	Include:	
Publication	 Original research, systematic reviews, and meta- 	
	analyses published from 2006 to 2016	
Study	Include:	
Design/Type of	Prospective cohort studies	
Research	Systematic reviews	
	Meta-analyses	
	Reports determined to have appropriate suitability	
	and quality by PAGAC (e.g., World Cancer Research	
	Fund, Institute of Medicine)	

	Randomized controlled trials	
	Case-control studies	
	Exclude:	
	 Non-randomized controlled trials 	
	 Retrospective cohort studies 	
	Narrative reviews	
	Commentaries	
	Editorials	
	 Cross-sectional studies 	
	 Before-and-after studies 	
Exposure	Include studies in which the exposure is:	
	 All types and intensities of physical activity 	
	Exclude:	
	 Studies measuring fitness as the only exposure 	
	variable	
	 Studies that only measure activities of daily living 	
	• Studies of multimodal interventions that do not	
	present data on physical activity alone	
	• Studies with physical activity variable only present	
	as confounding variable	
	Studies missing physical activity (mental games	
	such as Sudoku instead of physical activities)	
	• Studies of a single, acute bout of exercise	
	• Studies of a specific therapeutic exercise delivered	
Outcome	by a medical professional (e.g., physical therapist) Include studies in which the outcome is:	
Outcome	Cancer incidence	
	• cancel incidence	
	Exclude:	
	Studies with cancer biomarkers/intermediate	
	endpoints as the outcome	
	• Studies with cancer survival, quality of life, physical	
	function, comorbid conditions, recurrence, or	
	progression as the outcome	

Appendix E: Rationale for Exclusion at Abstract or Full-Text Triage for Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

Citation	Outcome	Study Design	Exposure	Not ideal fit for replacement of de novo search
Alipour S, Saberi A, Alikhassi A, Bayani L, Hosseini L. Association of mammographic breast density with dairy product consumption, sun exposure, and daily activity. <i>ISRN Oncol</i> . 2014;2014:159049. doi:10.1155/2014/159049.		x		
Arem H, Brinton LA, Moore SC, et al. Physical activity and risk of male breast cancer. <i>Cancer Epidemiol Biomarkers Prev.</i> 2015;24(12):1898-1901. doi:10.1158/1055-9965.EPI-15-0588.				х
Azevedo e Silva G, de Moura L, Curado MP, et al. The fraction of cancer attributable to ways of life, infections, occupation, and environmental agents in Brazil in 2020. <i>PLoS One.</i> 2016;11(2):e0148761. doi:10.1371/journal.pone.0148761.		x		
Babu GR, Lakshmi SB, Thiyagarajan JA. Epidemiological correlates of breast cancer in South India. <i>Asian Pac J Cancer Prev.</i> 2013;14(9):5077-5083.			х	
Brenner DR. Cancer incidence due to excess body weight and leisure-time physical inactivity in Canada: implications for prevention. <i>Prev Med</i> . 2014;66:131-139. doi:10.1016/j.ypmed.2014.06.018.			х	
Brody JG, Rudel RA, Michels KB, et al. Environmental pollutants, diet, physical activity, body size, and breast cancer: where do we stand in research to identify opportunities for prevention? <i>Cancer</i> . 2007;109(suppl 12):2627-2634.		x		
Brown JC, Winters-Stone K, Lee A, Schmitz KH. Cancer, physical activity, and exercise. <i>Compr Physiol</i> . 2012;2(4):2775-2809. doi:10.1002/cphy.c120005.		x		
Chlebowski RT. Nutrition and physical activity influence on breast cancer incidence and outcome. <i>Breast</i> . 2013;22(suppl 2):S30-S37. doi:10.1016/j.breast.2013.07.006.		х		
Cust AE. Physical activity and gynecologic cancer prevention. <i>Recent Results Cancer Res.</i> 2011;186:159-185. doi:10.1007/978-3-642-04231-7_7.		x		
Cuzick J, Thorat MA, Andriole G, et al. Prevention and early detection of prostate cancer. <i>Lancet Oncol.</i> 2014;15(11):e484-e492. doi:10.1016/S1470- 2045(14)70211-6.			x	
de Vries E, Soerjomataram I, Lemmens VE, et al. Lifestyle changes and reduction of colon cancer incidence in Europe: a scenario study of physical activity promotion and weight reduction. <i>Eur J Cancer</i> . 2010;46(14):2605- 2616. doi:10.1016/j.ejca.2010.07.040.		x		
Dolor RJ, Patel MR, Melloni C, et al. Noninvasive technologies for the diagnosis of coronary artery disease in women. <i>AHRQ Comparative Effectiveness</i> <i>Reviews</i> .Rockville, MD: Agency for Healthcare Research and Quality; 2012. Report No.: 12-EHC034-EF.	х			

Citation	Outcome	Study Design	Exposure	Not ideal fit for replacement of de novo search
Eccles SA, Aboagye EO, Ali S, et al. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. <i>Breast Cancer Res</i> . 2013;15(5):R92. doi:10.1186/bcr3493.		x		
Fahey PP, Mallitt KA, Astell-Burt T, Stone G, Whiteman DC. Impact of pre-diagnosis behavior on risk of death from esophageal cancer: a systematic review and meta- analysis. <i>Cancer Causes Control.</i> 2015;26(10):1365-1373. doi:10.1007/s10552-015-0635-z.	Х			
Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. <i>Best Pract Res Clin Gastroenterol.</i> 2006;20(4):633-649.		х		
Gao Y, Huang YB, Liu XO, et al. Tea consumption, alcohol drinking and physical activity associations with breast cancer risk among Chinese females: a systematic review and meta-analysis. <i>Asian Pac J Cancer Prev</i> . 2013;14(12):7543-7550.				х
Gonçalves AK, Dantas Florencio GL, Maisonnette de Atayde Silva MJ, Cobucci RN, Giraldo PC, Cote NM. Effects of physical activity on breast cancer prevention: a systematic review. <i>J Phys Act Health</i> . 2014;11(2):445- 454. doi:10.1123/jpah.2011-0316.				х
Green AC, Hayman LL, Cooley ME. Multiple health behavior change in adults with or at risk for cancer: a systematic review. <i>Am J Health Behav</i> . 2015;39(3):380- 394. doi:10.5993/AJHB.39.3.11.	х			
Halle M, Schoenberg MH. Physical activity in the prevention and treatment of colorectal carcinoma. <i>Dtsch Arztebl Int</i> . 2009;106(44):722-727. doi:10.3238/arztebl.2009.0722.		х		
Hashibe M, Hunt J, Wei M, Buys S, Gren L, Lee YC. Tobacco, alcohol, body mass index, physical activity, and the risk of head and neck cancer in the prostate, lung, colorectal, and ovarian (PLCO) cohort. <i>Head Neck</i> . 2013;35(7):914-922. doi:10.1002/hed.23052.		х		
Hayes J, Richardson A, Frampton C. Population attributable risks for modifiable lifestyle factors and breast cancer in New Zealand women. <i>Intern Med J.</i> 2013;43(11):1198-1204. doi:10.1111/imj.12256.		х		
Je Y, Jeon JY, Giovannucci EL, Meyehardt JA. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. <i>Int</i> <i>J Cancer</i> . 2013;133(8):1905-1913. doi:10.1002/ijc.28208.	Х			
Jiao L, Berrington de Gonzalez A, Hartge P, et al. Body mass index, effect modifiers, and risk of pancreatic cancer: a pooled study of seven prospective cohorts. <i>Cancer Causes Control.</i> 2010;21(8):1305-1314. doi:10.1007/s10552-010-9558-x.			x	
Keum N, Cao Y, Oh H, et al. Sedentary behaviors and light-intensity activities in relation to colorectal cancer risk. <i>Int J Cancer</i> . 2016;138(9):2109-2117. doi:10.1002/ijc.29953.		х		
Koutsokera A, Kiagia M, Saif MW, Souliotis K, Syrigos KN. Nutrition habits, physical activity, and lung cancer: an		х		

Citation	Outcome	Study	Exposure	Not ideal fit for replacement of
Citation	Outcome	Design	LAPOSULE	de novo search
authoritative review. Clin Lung Cancer. 2013;14(4):342-				
350. doi:10.1016/j.cllc.2012.12.002.				
Kruk J, Aboul-Enein HY. Physical activity in the prevention				
of cancer. Asian Pac J Cancer Prev. 2006;7(1):11-21.		Х		
Latino-Martel P, Cottet V, Druesne-Pecollo N, et al.				
Alcoholic beverages, obesity, physical activity and other				
nutritional factors, and cancer risk: a review of the		х		
evidence. Crit Rev Oncol Hematol. 2016;99:308-323.		^		
doi:10.1016/j.critrevonc.2016.01.002.				
Li T, Wei S, Shi Y, et al. The dose-response effect of				
physical activity on cancer mortality: findings from 71	Х			
prospective cohort studies. <i>Br J Sports Med</i> .				
2016;50(6):339-345. doi:10.1136/bjsports-2015-094927.				
Li Y, Gu M, Jing F, et al. Association between physical				
activity and all cancer mortality: dose-response meta-	Х			
analysis of cohort studies. Int J Cancer. 2016;138(4):818-				
832. doi:10.1002/ijc.29828.				
Lin JS, Eder M, Weinmann S, et al. Behavioral counseling				
to prevent skin cancer: systematic evidence review to				
update the 2003 U.S. Preventive Services Task Force				
Recommendation. U.S. Preventive Services Task Force			Х	
Evidence Syntheses, formerly Systematic Evidence				
Reviews. Rockville, MD: Agency for Healthcare Research				
and Quality; 2011.				
Maisonneuve P, Lowenfels AB. Risk factors for pancreatic				
cancer: a summary review of meta-analytical studies. Int			x	
J Epidemiol. 2015;44(1):186-198.			Λ	
doi:10.1093/ije/dyu240.				
Markozannes G, Tzoulaki I, Karli D, et al. Diet, body size,				
physical activity and risk of prostate cancer: an umbrella		х		
review of the evidence. Eur J Cancer. 2016;69:61-69.		~		
doi:10.1016/j.ejca.2016.09.026.				
Martin D. Physical activity benefits and risks on the				
gastrointestinal system. South Med J. 2011;104(12):831-		х		
837. doi:10.1097/SMJ.0b013e318236c263.				
Meads C, Ahmed I, Riley RD. A systematic review of				
breast cancer incidence risk prediction models with				
meta-analysis of their performance. Breast Cancer Res		х		
Treat. 2012;132(2):365-377. doi:10.1007/s10549-011-				
1818-2.				
Mordukhovich I, Reiter PL, Backes DM, et al. A review of				
African American-white differences in risk factors for				
cancer: prostate cancer. Cancer Causes Control.		Х		
2011;22(3):341-357. doi:10.1007/s10552-010-9712-5.				
Morrison DS, Batty GD, Kivimaki M, Davey Smith G,				
Marmot M, Shipley M. Risk factors for colonic and rectal				
cancer mortality: evidence from 40 years' follow-up in	х			
the Whitehall I study. J Epidemiol Community Health.				
2011;65(11):1053-1058. doi:10.1136/jech.2010.127555.				
Namiranian N, Moradi-Lakeh M, Razavi-Ratki SK, Doayie				
M, Nojomi M. Risk factors of breast cancer in the Eastern				
Mediterranean Region: a systematic review and meta-				x
analysis. Asian Pac J Cancer Prev. 2014;15(21):9535-				
9541.				
		1	1	1

Citation	Outcome	Study Design	Exposure	Not ideal fit for replacement of de novo search
Olsen CM, Bain CJ, Jordan SJ, et al; Australian Ovarian Cancer Study Group. Recreational physical activity and epithelial ovarian cancer: a case-control study, systematic review, and meta-analysis. <i>Cancer Epidemiol</i> <i>Biomarkers Prev.</i> 2007;16(11):2321-2330.				x
Otto SJ, Korfage IJ, Polinder S, et al. Association of change in physical activity and body weight with quality of life and mortality in colorectal cancer: a systematic review and meta-analysis. <i>Support Care Cancer</i> . 2015;23(5):1237-1250. doi:10.1007/s00520-014-2480-0.	х			
Park S, Kim Y, Shin HR, et al. Population-attributable causes of cancer in Korea: obesity and physical inactivity. <i>PLoS One.</i> 2014;9(4):e90871. doi:10.1371/journal.pone.0090871.			x	
Phung OJ, Coleman CI, Baker EL, et al. Effectiveness of recombinant human growth hormone (rhGH) in the treatment of patients with cystic fibrosis. <i>AHRQ</i> <i>Comparative Effectiveness Review No. 23</i> . Rockville, MD: Agency for Healthcare Research and Quality; 2010. AHRQ Publication No. 11-EHC003.	Х			
Rajarajeswaran P, Vishnupriya R. Exercise in cancer. Indian J Med Paediatr Oncol. 2009;30(2):61-70. doi:10.4103/0971-5851.60050.		х		
Reimers CD, Knapp G, Reimers AK. Does physical activity increase life expectancy? A review of the literature. <i>J Aging Res.</i> 2012;2012:243958. doi:10.1155/2012/243958.		х		
Schoenberg MH. Physical activity and nutrition in primary and tertiary prevention of colorectal cancer. <i>Visc Med</i> . 2016;32(3):199-204. doi:10.1159/000446492.		х		
Shi Y, Li T, Wang Y, et al. Household physical activity and cancer risk: a systematic review and dose-response meta-analysis of epidemiological studies. <i>Sci Rep.</i> 2015;5:14901. doi:10.1038/srep14901.				
Tay L, Tan K, Diener E, Gonzalez E. Social relations, health behaviors, and health outcomes: a survey and synthesis. <i>Appl Psychol Health Well Being</i> . 2013;5(1):28-78. doi:10.1111/aphw.12000.		Х		
Volaklis KA, Halle M, Tokmakidis SP. Exercise in the prevention and rehabilitation of breast cancer. <i>Wien Klin Wochenschr.</i> 2013;125(11-12):297-301. doi:10.1007/s00508-013-0365-8.		х		
Wang D, Zheng W, Wang SM, et al. Estimation of cancer incidence and mortality attributable to overweight, obesity, and physical inactivity in China. <i>Nutr Cancer</i> . 2012;64(1):48-56. doi:10.1080/01635581.2012.630166.		х		
Wigle DT, Turner MC, Gomes J, Parent ME. Role of hormonal and other factors in human prostate cancer. J <i>Toxicol Environ Health B Crit Rev</i> . 2008;11(3-4):242-259. doi:10.1080/10937400701873548.		х		
Wilson LF, Page AN, Dunn NA, Pandeya N, Protani MM, Taylor RJ. Population attributable risk of modifiable risk factors associated with invasive breast cancer in women aged 45-69 years in Queensland, Australia. <i>Maturitas</i> .			x	

Citation	Outcome	Study Design	Exposure	Not ideal fit for replacement of de novo search
2013;76(4):370-376.				
doi:10.1016/j.maturitas.2013.09.002.				
Winzer BM, Whiteman DC, Reeves MM, Paratz JD.				
Physical activity and cancer prevention: a systematic	х			
review of clinical trials. Cancer Causes Control.	^			
2011;22(6):811-826. doi:10.1007/s10552-011-9761-4.				
Wiseman M. The second World Cancer Research				
Fund/American Institute for Cancer Research expert				
report. Food, nutrition, physical activity, and the		Х		
prevention of cancer: a global perspective. Proc Nutr Soc.				
2008;67(3):253-256. doi:10.1017/S002966510800712X.				
Zhou LM. Recreational physical activity and risk of				
ovarian cancer: a meta-analysis. Asian Pac J Cancer Prev.				Х
2014;15(13):5161-5166.				

References

1. Keimling M, Behrens G, Schmid D, Jochem C, Leitzmann MF. The association between physical activity and bladder cancer: systematic review and meta-analysis. *Br J Cancer*. 2014;110(7):1862-1870. doi:10.1038/bjc.2014.77.

2. Moore SC, Lee IM, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. *JAMA Intern Med*. 2016;176(6):816-825. doi:10.1001/jamainternmed.2016.1548.

3. World Cancer Research Fund International, American Institute for Cancer Research. *Continuous Update Project Report: Diet, Nutrition, Physical Activity and Bladder Cancer*; 2015a. <u>http://www.wcrf.org/bladder-cancer-2015</u>. Accessed January 16, 2018.

4. Niedermaier T, Behrens G, Schmid D, Schlecht I, Fischer B, Leitzmann MF. Body mass index, physical activity, and risk of adult meningioma and glioma: a meta-analysis. *Neurology*. 2015;85(15):1342-1350. doi:10.1212/WNL.00000000002020.

5. Liu L, Shi Y, Li T, et al. Leisure time physical activity and cancer risk: evaluation of the WHO's recommendation based on 126 high-quality epidemiological studies. *Br J Sports Med*. 2016;50(6):372-378. doi:10.1136/bjsports-2015-094728.

6. Neilson HK, Farris MS, Stone CR, et al. Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: a systematic review and meta-analysis. *Menopause*. 2017;24(3):322-344. doi: 10.1097/GME.000000000000745.

7. Pizot C, Boniol M, Mullie P, et al. Physical activity, hormone replacement therapy and breast cancer risk: a meta-analysis of prospective studies. *Eur J Cancer*. 2016;52:138-154. doi:10.1016/j.ejca.2015.10.063.

8. Wu Y, Zhang D, Kang S. Physical activity and risk of breast cancer: a meta-analysis of prospective studies. *Breast Cancer Res Treat*. 2013;137(3):869-882. doi:10.1007/s10549-012-2396-7.

9. Gong Z, Hong CC, Bandera EV, et al. Vigorous physical activity and risk of breast cancer in the African American breast cancer epidemiology and risk consortium. *Breast Cancer Res Treat*. 2016;159(2):347-356. doi:10.1007/s10549-016-3936-3.

10. Pham NM, Mizoue T, Tanaka K, et al; Research Group for the Development and Evaluation of Cancer Prevention Strategies in Japan. Physical activity and colorectal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. *Jpn J Clin Oncol*. 2012;42(1):2-13. doi:10.1093/jjco/hyr160.

11. Boyle T, Keegel T, Bull F, Heyworth J, Fritschi L. Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. *J Natl Cancer Inst*. 2012;104(20):1548-1561. doi:10.1093/jnci/djs354.

12. Harriss DJ, Atkinson G, Batterham A, et al; Colorectal Cancer, Lifestyle, Exercise And Research Group. Lifestyle factors and colorectal cancer risk (2): a systematic review and meta-analysis of associations with leisure-time physical activity. *Colorectal Dis*. 2009;11(7):689-701. doi:10.1111/j.1463-1318.2009.01767.x.

13. Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. *Cancer Causes Control*. 2013;24(6):1207-1222. doi:10.1007/s10552-013-0201-5.

14. Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. *BMJ*. 2016;354:i3857. doi:10.1136/bmj.i3857.

15. Robsahm TE, Aagnes B, Hjartaker A, Langseth H, Bray FI, Larsen IK. Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic review and meta-analysis of cohort studies. *Eur J Cancer Prev.* 2013;22(6):492-505. doi:10.1097/CEJ.0b013e328360f434.

16. Wolin KY, Yan Y, Colditz GA, Lee IM. Physical activity and colon cancer prevention: a meta-analysis. *Br J Cancer*. 2009;100(4):611-616. doi:10.1038/sj.bjc.6604917.

17. World Cancer Research Fund International, American Institute for Cancer Research. *Continuous Update Project Report: Food, Nutrition, Physical Activity, and the Prevention of Colorectal Cancer*. <u>http://www.wcrf.org/sites/default/files/Colorectal-Cancer-2011-Report.pdf</u>. Published 2011. Accessed October 11, 2017.

18. World Cancer Research Fund International, American Institute for Cancer Research. *Continuous Update Project Report: Diet, Nutrition, Physical Activity and Colorectal Cancer*. <u>http://www.aicr.org/continuous-update-project/reports/colorectal-cancer-2017-report.pdf</u>. Published 2017. Accessed October 11, 2017.

19. Keum N, Ju W, Lee DH, et al. Leisure-time physical activity and endometrial cancer risk: dose-response meta-analysis of epidemiological studies. *Int J Cancer*. 2014;135(3):682-694. doi:10.1002/ijc.28687.

20. Moore SC, Gierach GL, Schatzkin A, Matthews CE. Physical activity, sedentary behaviours, and the prevention of endometrial cancer. *Br J Cancer*. 2010;103(7):933-938. doi:10.1038/sj.bjc.6605902.

21. Schmid D, Behrens G, Keimling M, Jochem C, Ricci C, Leitzmann M. A systematic review and metaanalysis of physical activity and endometrial cancer risk. *Eur J Epidemiol*. 2015;30(5):397-412. doi:10.1007/s10654-015-0017-6.

22. Behrens G, Jochem C, Keimling M, Ricci C, Schmid D, Leitzmann MF. The association between physical activity and gastroesophageal cancer: systematic review and meta-analysis. *Eur J Epidemiol*. 2014;29(3):151-170. doi:10.1007/s10654-014-9895-2.

23. Chen Y, Yu C, Li Y. Physical activity and risks of esophageal and gastric cancers: a meta-analysis. *PLoS One*. 2014;9(2):e88082. doi:10.1371/journal.pone.0088082.

24. Singh S, Devanna S, Edakkanambeth Varayil J, Murad MH, Iyer PG. Physical activity is associated with reduced risk of esophageal cancer, particularly esophageal adenocarcinoma: a systematic review and meta-analysis. *BMC Gastroenterol*. 2014;14:101. doi:10.1186/1471-230X-14-101.

25. Abioye AI, Odesanya MO, Abioye AI, Ibrahim NA. Physical activity and risk of gastric cancer: a metaanalysis of observational studies. *Br J Sports Med*. 2015;49(4):224-229. doi:10.1136/bjsports-2013-092778. 26. Psaltopoulou T, Ntanasis-Stathopoulos I, Tzanninis IG, Kantzanou M, Georgiadou D, Sergentanis TN. Physical activity and gastric cancer risk: a systematic review and meta-analysis. *Clin J Sport Med*. 2016;26(6):445-464.

27. Singh S, Edakkanambeth Varayil J, Devanna S, Murad MH, Iyer PG. Physical activity is associated with reduced risk of gastric cancer: a systematic review and meta-analysis. *Cancer Prev Res (Phila)*. 2014;7(1):12-22. doi:10.1158/1940-6207.CAPR-13-0282.

28. Nicolotti N, Chuang SC, Cadoni G, et al. Recreational physical activity and risk of head and neck cancer: a pooled analysis within the international head and neck cancer epidemiology (INHANCE) Consortium. *Eur J Epidemiol*. 2011;26(8):619-628. doi:10.1007/s10654-011-9612-3.

29. Jochem C, Leitzmann MF, Keimling M, Schmid D, Behrens G. Physical activity in relation to risk of hematologic cancers: a systematic review and meta-analysis. *Cancer Epidemiol Biomarkers Prev*. 2014;23(5):833-846. doi:10.1158/1055-9965.EPI-13-0699.

30. Vermaete NV, Wolter P, Verhoef GE, et al. Physical activity and risk of lymphoma: a meta-analysis. *Cancer Epidemiol Biomarkers Prev.* 2013;22(7):1173-1184. doi:10.1158/1055-9965.EPI-13-0182.

31. Aschebrook-Kilfoy B, Cocco P, La Vecchia C, et al. Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sézary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. *J Natl Cancer Inst Monogr*. 2014;2014(48):98-105. doi:10.1093/jncimonographs/lgu008.

32. Brenner DR, Yannitsos DH, Farris MS, Johansson M, Friedenreich CM. Leisure-time physical activity and lung cancer risk: a systematic review and meta-analysis. *Lung Cancer*. 2016;95:17-27. doi:10.1016/j.lungcan.2016.01.021.

33. Buffart LM, Singh AS, van Loon EC, Vermeulen HI, Brug J, Chinapaw MJ. Physical activity and the risk of developing lung cancer among smokers: a meta-analysis. *J Sci Med Sport*. 2014;17(1):67-71. doi:10.1016/j.jsams.2013.02.015.

34. Schmid D, Ricci C, Behrens G, Leitzmann MF. Does smoking influence the physical activity and lung cancer relation? A systematic review and meta-analysis. *Eur J Epidemiol*. 2016;31(12):1173-1190. doi:10.1007/s10654-016-0186-y.

35. Sun JY, Shi L, Gao XD, Xu SF. Physical activity and risk of lung cancer: a meta-analysis of prospective cohort studies. *Asian Pac J Cancer Prev*. 2012;13(7):3143-3147.

36. Zhong S, Ma T, Chen L, et al. Physical activity and risk of lung cancer: a meta-analysis. *Clin J Sport Med*. 2016;26(3):173-181. doi:10.1097/JSM.00000000000219.

37. Zhong S, Chen L, Lv M, Ma T, Zhang X, Zhao J. Nonoccupational physical activity and risk of ovarian cancer: a meta-analysis. *Tumour Biol*. 2014;35(11):11065-11073. doi:10.1007/s13277-014-2385-z.

38. Cannioto R, LaMonte MJ, Risch HA, et al. Chronic recreational physical inactivity and epithelial ovarian cancer risk: evidence from the Ovarian Cancer Association Consortium. *Cancer Epidemiol Biomarkers Prev.* 2016;25(7):1114-1124. doi:10.1158/1055-9965.EPI-15-1330.

39. Bao Y, Michaud DS. Physical activity and pancreatic cancer risk: a systematic review. *Cancer Epidemiol Biomarkers Prev.* 2008;17(10):2671-2682. doi:10.1158/1055-9965.EPI-08-0488.

40. Behrens G, Jochem C, Schmid D, Keimling M, Ricci C, Leitzmann MF. Physical activity and risk of pancreatic cancer: a systematic review and meta-analysis. *Eur J Epidemiol*. 2015;30(4):279-298. doi:10.1007/s10654-015-0014-9.

41. Farris MS, Mosli MH, McFadden AA, Friedenreich CM, Brenner DR. The association between leisure time physical activity and pancreatic cancer risk in adults: a systematic review and meta-analysis. *Cancer Epidemiol Biomarkers Prev.* 2015;24(10):1462-1473. doi:10.1158/1055-9965.EPI-15-0301.

42. O'Rorke MA, Cantwell MM, Cardwell CR, Mulholland HG, Murray LJ. Can physical activity modulate pancreatic cancer risk? A systematic review and meta-analysis. *Int J Cancer*. 2010;126(12):2957-2968. doi:10.1002/ijc.24997.

43. Liu Y, Hu F, Li D, et al. Does physical activity reduce the risk of prostate cancer? A systematic review and meta-analysis. *Eur Urol*. 2011;60(5):1029-1044. doi:10.1016/j.eururo.2011.07.007.

44. Behrens G, Leitzmann MF. The association between physical activity and renal cancer: systematic review and meta-analysis. *Br J Cancer*. 2013;108(4):798-811. doi:10.1038/bjc.2013.37.

45. World Cancer Research Fund International, American Institute for Cancer Research. *Continuous Update Project Report: Diet, Nutrition, Physical Activity and Kidney Cancer*; 2015b. <u>http://www.wcrf.org/kidney-cancer-2015</u>. Accessed January 16, 2018.

46. Schmid D, Behrens G, Jochem C, Keimling M, Leitzmann M. Physical activity, diabetes, and risk of thyroid cancer: a systematic review and meta-analysis. *Eur J Epidemiol*. 2013;28(12):945-958. doi:10.1007/s10654-013-9865-0.

47. Kitahara CM, Platz EA, Beane Freeman LE, et al. Physical activity, diabetes, and thyroid cancer risk: a pooled analysis of five prospective studies. *Cancer Causes Control*. 2012;23(3):463-471. doi:10.1007/s10552-012-9896-y.