Evidence Portfolio – Exposure Subcommittee, Question 3

What is the relationship between physical activity and cardiovascular disease incidence?

- a) Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b) Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?

Sources of Evidence: Existing Systematic Review and Meta-Analyses

Conclusion Statements and Grades

Strong evidence demonstrates a significant relationship between greater amounts of physical activity and decreased incidence of cardiovascular disease, stroke, and heart failure. The strength of the evidence is unlikely to be modified by more studies of these outcomes. **PAGAC Grade: Strong.**

Strong evidence demonstrates a significant dose-response relationship between physical activity and cardiovascular disease, stroke, and heart failure. When exposures are expressed as energy expenditure (MET-hours per week), the shape of the curve for incident CVD appears to be nonlinear, with the greatest benefit seen early in the dose-response relationship. It is unclear whether the shapes of the relations for incident stroke and heart failure are linear or nonlinear. There is no lower limit for the relation of MPVA and risk reduction. Risk appears to continue to decrease with increased exposure up to at least five times the current recommended levels of moderate-to-vigorous physical activity. **PAGAC Grade: Strong.**

Insufficient evidence is available to determine whether these relationships vary by age, sex, race, ethnicity, socioeconomic status, or weight status. **PAGAC Grade: Not assignable.**

Description of the Evidence

An initial search for systematic reviews, meta-analyses, pooled analyses, and reports identified sufficient literature to answer the research question as determined by the Exposure Subcommittee. Additional searches for original research were not needed.

Existing Systematic Review and Meta-Analyses

Overview

A total of 10 existing reviews were included: 1 systematic review¹ and 9 meta-analyses.²⁻¹⁰ The reviews were published from 2008 to 2016.

The systematic review¹ included 254 studies published between 1950 and 2008.

The meta-analyses included a range of 12 to 43 studies. Most meta-analyses covered an extensive timeframe: from inception to 2013,⁹ from 1954 and 1966 to 2007,^{2, 10} and from the 1980s and 1990s to 2005–2016.²⁻⁶, ⁸

Exposures

The majority of included reviews examined self-reported physical activity (PA). Different domains of PA were also assessed, including total PA⁴; occupational and leisure PA³; occupational, leisure, and transport PA⁶; and leisure PA only.² Some reviews also established specific PA dose categories in metabolic equivalent minutes or hours per week.^{4, 5, 8, 10} Other reviews used minimal or low vs. moderate or high PA levels as reported in individual studies.^{1, 2, 2} Two meta-analyses examined specific types of PA: Tai Chi Chuan⁹ and walking.¹⁰

Outcomes

Included reviews addressed the incidence of cardiovascular disease in a variety of ways, including risk of stroke, $\frac{2}{2}, \frac{4}{9}$ heart failure incidence and risk, $\frac{3}{5}$ and risk and incidence of coronary heart disease. $\frac{6}{7}, \frac{7}{10}$

Populations Analyzed

The table below lists the populations analyzed in each article.

Table 1. Populations Analyzed by All Sources of Evidence

	Sex	Age	Other
Diep, 2010	Female, Male	Adults	
Echouffo- Tcheugui, 2015	Female, Male	Adults	Region: U.S., non- U.S.
Kyu, 2016		Adults	
Pandey, 2015	Female, Male	Adults <55, ≥55	Region: U.S., Europe
Sattelmair, 2011	Female, Male	Adults	
Sofi, 2008	Female, Male	Adults 20–88	
Wahid, 2016		Adults 19–79	
Warburton, 2010		Adults 19–65	
Zheng, 2015		Adults ≥30	
Zheng, 2009	Female, Male	Adults <55, ≥55	

Supporting Evidence

Existing Systematic Review and Meta-Analyses

Table 2. Existing Systematic Review and Meta-Analyses Individual Evidence Summary Tables

Meta-Analysis

Citation: Diep L, Kwagyan J, Kurantsin-Mills J, Weir R, Jayam-Trouth A. Association of physical activity level and stroke outcomes in men and women: a meta-analysis. *J Womens Health (Larchmt)*. 2010;19(10):1815-1822. doi:10.1089/jwh.2009.1708.

2010,19(10).1815-1822. 001.10.10	55/JW1.2005.1708.
Purpose: To perform a	Abstract: OBJECTIVE: The protective effect of physical activity (PA)
comprehensive meta-analysis of	on risk of stroke remains controversial as a result of lack of insight
studies to (1) quantify the	into the sources of heterogeneity between studies. We performed
association between physical	a comprehensive meta-analysis of studies to (1) quantify the
activity (PA) level and risk of	association between PA level and risk of stroke outcomes and (2)
stroke outcomes and (2) test	test the hypothesis that the association of PA level with stroke
the hypothesis that the	outcomes will be similar between men and women. The outcome
association of PA level with	measures are stroke incidence, stroke mortality, or both.
stroke outcomes will be similar	METHODS: Cohort studies were identified by searching MEDLINE
between men and women.	and EMBASE (from 1986 to 2005) and meta-analysis conducted
Timeframe: January 1986–	according to meta-analysis of Observational Studies in
September 2005	Epidemiology (MOOSE) group recommendations. Data were
Total # of Studies: 13	reported as pooled relative risk (RR) and 95% confidence intervals
Exposure Definition: Physical	(CI) using random-effects models to assess the association of
Activity: differed by studies,	stroke outcomes with PA level. Heterogeneity was investigated,
many used self-report	and sensitivity analysis was performed. Stratified analysis by
questionnaires. PA was	gender was performed. RESULTS: Of 992 articles, 13 satisfied all
categorized for analysis as low,	eligibility criteria and were studied. Compared with low PA,
moderate, and high level.	moderate PA caused an 11% reduction in risk of stroke outcome
Measures Steps: No	(RR = 0.89, 95% CI 0.86-0.93, p < 0.01) and high PA a 19% reduction
Measures Bouts: No	(RR = 0.81, CI 0.77-0.84, p < 0.01). Among the men, results showed
Examines HIIT: No	a 12% reduction in risk associated with moderate PA (RR = 0.88, CI
Outcomes Addressed: Risk of	0.82-0.94, p < 0.01) and 19% reduction for high PA (RR = 0.81, CI
first stroke or stroke death:	0.75-0.87, p < 0.01). Among the women, results showed a 24%
Outcome assessment varied by	reduction in risk for high PA (RR = 0.76 , Cl 0.64 89, p < 0.01). There
study, either death certificate,	was, however, no significant risk reduction associated with a
medical record, or confirmed by	moderate PA level in women. CONCLUSIONS: Increased PA level
radiographic evaluation.	appears beneficial in reduction of risk of stroke and related
Relative risk estimates	outcomes. However, higher levels of PA may be required in women
calculated for analysis.	to achieve as significant a risk reduction as in men. An exercise
Examine Cardiorespiratory	regimen tailored to women to improve related physiological
Fitness as Outcome: No	mechanisms will likely be beneficial.
Populations Analyzed: Male,	Author-Stated Funding Source: National Institutes of Health
Female, Adults	National Center for Research Resources, Howard University,
	AAASPS, and PROFESS Study on Stroke Patients.

Citation: Echouffo-Tcheugui JB, Butler J, Yancy CW, Fonarow GC. Association of physical activity or fitness with incident heart failure: a systematic review and meta-analysis. *Circ Heart Fail.* 2015. 8(5):853-861. doi:10.1161/CIRCHEARTFAILURE.115.002070.

Purpose: To examine the association of physical activity (PA) and the incidence of heart failure, as well as the effect of fitness on heart failure occurrence.Abstract: BACKGROUND: Previous studies have shown that high levels of physical activity are associated with lower risk of risk factors for heart failure (HF), such as coronary heart disease, hypertension, and diabetes mellitus. However, the effects of physical activity or fitness on the incidence of HF remain unclear. METHODS AND RESULTS: MEDLINE and EMBASE were systematically searched until November 30, 2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis included a total of 282 889 participants followed for the meta-analyses, with the highest group as the referent. Only the estimate for total physical fitness: continuous measure reported by study.NoMeasures Steps: No Measures Steps: No ICD-10 codes, death certificate, self- report by physician, and Framingham criteria. Pooled relativer isks were estimated.Author-Stated Funding Source: Not ReportedExamine Cardiorespiratory Fitness a Soutcome: NoAuthor-Stated Funding Source: Not Reported	8(5).855-801. 001.10.1101/CINCILLANT	TAILORE.113.002070.
and the incidence of heart failure, as well as the effect of fitness on heart failure occurrence.risk factors for heart failure (HF), such as coronary heart disease, hypertension, and diabetes mellitus. However, the effects of physical activity or fitness on the incidence of HF remain unclear. METHODS AND RESULTS: MEDLINE and EMBASE were systematically searched until November 30, 2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity sudies, maximum versus minimal amount of PA) were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical for Egger test=0.34). The pooled associated effect of physical for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	Purpose: To examine the	Abstract: BACKGROUND: Previous studies have shown that
well as the effect of fitness on heart failure occurrence.disease, hypertension, and diabetes mellitus. However, the effects of physical activity or fitness on the incidence of HFTimeframe: 1990-November 2014EMBASE were systematically searched until November 30, 2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis, with hetrogeneity assessed with the (l2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	association of physical activity (PA)	high levels of physical activity are associated with lower risk of
failure occurrence.effects of physical activity or fitness on the incidence of HFTimeframe: 1990-November 2014remain unclear. METHODS AND RESULTS: MEDLINE andTotal # of Studies: 12EMBASE were systematically searched until November 30,Exposure Definition: includedStudies categorized participants onthe basis of occupational and leisuretime PA, vigorous PA, andcumulative/total PA. The extremegroups (i.e., maximum versusminimal amount of PA) were usedfor the meta-analyses, with thefor the meta-analyses, with theeligible studies were pooled using a random-effects modelminimal amount of PA) were usedfor 7 to 30 years. For the physical activity eligible formeta-analysis included a total of 282 889 participants followedfor 7 to 30 years. For the physical activity groups were usedfor analyses; with a total number of participants (n=165 695).activity was used. Physical fitness:continuous measure reported bystudy.Measures Steps: NoMeasures Steps: NoCuctomes Addressed: Heart failureincidence: assessment varied bystudy, including discharge ICD-9 orICD-10 codes, death certificate, self-report by physician, andFramingham criteria. Pooled relativerFramingham criteria. Pooled relativerrisks were estimated.Examine Cardiorespiratory Fitnessas Outcome: NoPopulations Analyzed: Male,Female; Adults; Region: U.S., non-	and the incidence of heart failure, as	risk factors for heart failure (HF), such as coronary heart
Timeframe: 1990–November 2014remain unclear. METHODS AND RESULTS: MEDLINE andTotal # of Studies: 12EMBASE were systematically searched until November 30,Exposure Definition: Included2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.67-0.71]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical association between increased physical activity of fitness and decreased incidence of HF.Outcomes Addressed: Heart failure incidence: assessment varied by study, including discharge ICD-9 or ICD-10 codes, death certificate, self- report by physician, and Framingham criteria. Pooled relativer isks were estimated.Author-Stated Funding Source: Not ReportedPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	well as the effect of fitness on heart	disease, hypertension, and diabetes mellitus. However, the
Total # of Studies: 12EMBASE were systematically searched until November 30, 2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis, with heterogeneity assessed with the (12) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical activity or fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	failure occurrence.	effects of physical activity or fitness on the incidence of HF
Exposure Definition: Included studies categorized participants on the basis of occupational and leisure time PA, vigorous PA, and cumulative/total PA. The extreme groups (i.e., maximum versus minimal amount of PA) were used for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity was used. Physical fitness: continuous measure reported by study.2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random effects model meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity studies, maximum versus minimal amount of physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical for tages restimated. Examine Cardiorespiratory Fitness as Outcome: NoPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	Timeframe: 1990–November 2014	remain unclear. METHODS AND RESULTS: MEDLINE and
 studies categorized participants on the basis of occupational and leisure time PA, vigorous PA, and cumulative/total PA. The extreme groups (i.e., maximum versus minimal amount of PA) were used for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity was used. Physical fitness: continuous measure reported by study. Measures Steps: No Measures Steps: No Examines HIIT: No Outcomes Addressed: Heart failure incidence: assessment varied by study, including discharge ICD-9 or ICD-10 codes, death certificate, self- report by physician, and Framingham criteria. Pooled relative risks were estimated. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Male, Female; Adults; Region: U.S., non- Adutor-Stated Funding Source: Not Reported 	Total # of Studies: 12	EMBASE were systematically searched until November 30,
 the basis of occupational and leisure time PA, vigorous PA, and cumulative/total PA. The extreme groups (i.e., maximum versus minimal amount of PA) were used for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity as used. Physical fitness: continuous measure reported by study. Measures Steps: No Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Heart failure incidence: assessment varied by study, including discharge ICD-9 or ICD-10 codes, death certificate, self-report by physician, and Framingham criteria. Pooled relative risk swere estimated. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Male, Female; Adults; Region: U.S., non- incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF. 	Exposure Definition: Included	2014. Prospective cohort studies reporting measures of the
 time PA, vigorous PA, and cumulative/total PA. The extreme groups (i.e., maximum versus minimal amount of PA) were used for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity are used. Physical fitness: continuous measure reported by study. Measures Steps: No Measures Steps: No Measures Steps: No Measures HIIT: No Outcomes Addressed: Heart failure incidence: assessment varied by study, including discharge ICD-9 or ICD-10 codes, death certificate, self-report by physician, and Framingham criteria. Pooled relative risk swere estimated. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Male, Female; Adults; Region: U.S., non- etigible studies were pooled using a random-effects model meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.61-0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF. 	studies categorized participants on	association of physical activity (n=10) or fitness (n=2) with
cumulative/total PA. The extreme groups (i.e., maximum versus minimal amount of PA) were used for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity was used. Physical fitness: continuous measure reported by study.meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity studies, maximum versus minimal amount of physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	the basis of occupational and leisure	incident HF were included. Extracted effect estimates from the
groups (i.e., maximum versus minimal amount of PA) were used for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity was used. Physical fitness: continuous measure reported by study.statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	time PA, vigorous PA, and	eligible studies were pooled using a random-effects model
minimal amount of PA) were used for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity was used. Physical fitness: continuous measure reported by study.meta-analyses, with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	cumulative/total PA. The extreme	meta-analysis, with heterogeneity assessed with the I(2)
for the meta-analyses, with the highest group as the referent. Only the estimate for total physical activity was used. Physical fitness: continuous measure reported by study.for 7 to 30 years. For the physical activity studies, maximum versus minimal amount of physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	groups (i.e., maximum versus	
highest group as the referent. Only the estimate for total physical activity was used. Physical fitness: continuous measure reported by study.versus minimal amount of physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	minimal amount of PA) were used	
the estimate for total physical activity was used. Physical fitness: continuous measure reported by study.for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Framingham criteria. Pooled relative risks were estimated.Author-Stated Funding Source: Not ReportedPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	for the meta-analyses, with the	
activity was used. Physical fitness: continuous measure reported by study.The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61- 0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Framingham criteria. Pooled relative risks were estimated.Author-Stated Funding Source: Not ReportedPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	highest group as the referent. Only	
continuous measure reported by study.among those with a regular exercise pattern was 0.72 (95% Cl, 0.67-0.79). Findings were similar for men (0.71 [95% Cl, 0.61- 0.83]) and women (0.72 [95% Cl, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% Cl, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	the estimate for total physical	
study.0.67-0.79). Findings were similar for men (0.71 [95% Cl, 0.61- 0.83]) and women (0.72 [95% Cl, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% Cl, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Framingham criteria. Pooled relative risks were estimated.Outcomes Adalyzed: Male, Female; Adults; Region: U.S., non-Aduthor-Stated Funding Source: Not Reported	activity was used. Physical fitness:	
Measures Steps: No0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Framingham criteria. Pooled relative risks were estimated.Outcomes Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	continuous measure reported by	
Measures Bouts: Noexercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	-	
Examines HIIT: Nofor Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Framingham criteria. Pooled relative risks were estimated.Author-Stated Funding Source: Not ReportedPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	-	
Outcomes Addressed: Heart failure incidence: assessment varied by study, including discharge ICD-9 or ICD-10 codes, death certificate, self- report by physician, and Framingham criteria. Pooled relative risks were estimated.fitness on incident HF was 0.79 (95% Cl, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Examine Cardiorespiratory Fitness as Outcome: NoAuthor-Stated Funding Source: Not Reported		
incidence: assessment varied by study, including discharge ICD-9 or ICD-10 codes, death certificate, self- report by physician, andunit increase in metabolic equivalent of oxygen consumption. CONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Examine Cardiorespiratory Fitness as Outcome: NoAuthor-Stated Funding Source: Not ReportedPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported		
study, including discharge ICD-9 or ICD-10 codes, death certificate, self- report by physician, andCONCLUSIONS: Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF.Framingham criteria. Pooled relative risks were estimated.Conclusion between increased physical activity or fitness and decreased incidence of HF.Examine Cardiorespiratory Fitness as Outcome: NoAuthor-Stated Funding Source: Not ReportedPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported		
ICD-10 codes, death certificate, self- report by physician, andassociation between increased physical activity or fitness and decreased incidence of HF.Framingham criteria. Pooled relative risks were estimated.association between increased physical activity or fitness and decreased incidence of HF.Examine Cardiorespiratory Fitness as Outcome: NoAuthor-Stated Funding Source: Not ReportedPopulations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported	-	
report by physician, and decreased incidence of HF. Framingham criteria. Pooled relative risks were estimated. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Male, Female; Adults; Region: U.S., non-		
Framingham criteria. Pooled relative risks were estimated. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Male, Female; Adults; Region: U.S., non-		
risks were estimated. Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Male, Female; Adults; Region: U.S., non- Kemale; Adults; Region: U.S., non-		decreased incidence of HF.
Examine Cardiorespiratory Fitness as Outcome: No Author-Stated Funding Source: Not Reported Populations Analyzed: Male, Female; Adults; Region: U.S., non- Author-Stated Funding Source: Not Reported		
as Outcome: No Author-Stated Funding Source: Not Reported Populations Analyzed: Male, Author-Stated Funding Source: Not Reported Female; Adults; Region: U.S., non- Female Source: Not Reported		
Populations Analyzed: Male, Female; Adults; Region: U.S., non-Author-Stated Funding Source: Not Reported		
Female; Adults; Region: U.S., non-		
		Author-Stated Funding Source: Not Reported
U.S.		
	U.S.	

Citation: Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and doseresponse meta-analysis for the Global Burden of Disease Study 2013. BMJ. 2016;354:i3857. doi:10.1136/bmj.i3857.

Purpose: To quantify the dose-response associations between total physical activity (PA) and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events.

Timeframe: 1980–2016 Total # of Studies: 174 (43 for ischemic heart disease and 26 for ischemic stroke). Exposure Definition: Total PA—in metabolic equivalent (MET) minutes/week—was estimated from all included studies. Continuous and categorical dose-response between PA and outcomes conducted. Categorical compared insufficiently active (<600 MET minutes/week), low active (600-3,999 MET minutes), moderately active (4000-7,999 MET minutes), and highly active (≥8,000 MET minutes). Measures Steps: No Measures Bouts: No Examines HIIT: No Outcomes Addressed: Risk of ischemic heart disease, ischemic stroke, breast cancer, colon

cancer, and diabetes. Pooled

relative risk estimated for

Examine Cardiorespiratory Fitness as Outcome: No

analyses.

Adults

between total physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events. DESIGN: Systematic review and Bayesian dose-response meta-analysis. DATA SOURCES: PubMed and Embase from 1980 to 27 February 2016, and references from relevant systematic reviews. Data from the Study on Global AGEing and Adult Health conducted in China, Ghana, India, Mexico, Russia, and South Africa from 2007 to 2010 and the US National Health and Nutrition Examination Surveys from 1999 to 2011 were used to map domain specific physical activity (reported in included studies) to total activity. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Prospective cohort studies examining the associations between physical activity (any domain) and at least one of the five diseases studied. RESULTS: 174 articles were identified: 35 for breast cancer, 19 for colon cancer, 55 for diabetes, 43 for ischemic heart disease, and 26 for ischemic stroke (some articles included multiple outcomes). Although higher levels of total physical activity were significantly associated with lower risk for all outcomes, major gains occurred at lower levels of activity (up to 3000-4000 metabolic equivalent (MET) minutes/week). For example, individuals with a total activity level of 600 MET minutes/week (the minimum recommended level) had a 2% lower risk of diabetes compared with those reporting no physical activity. An increase from 600 to 3600 MET minutes/week reduced the risk by an additional 19%. The same amount of increase vielded much smaller returns at higher levels of activity: an increase of total activity from 9000 to 12 000 MET minutes/week reduced the risk of diabetes by only 0.6%. Compared with insufficiently active individuals (total activity <600 MET minutes/week), the risk reduction for those in the highly active category (>/=8000 MET minutes/week) was 14% (relative risk 0.863, 95% uncertainty interval 0.829 to 0.900) for breast cancer; 21% (0.789, 0.735 to 0.850) for colon cancer; 28% (0.722, 0.678 to 0.768) for diabetes; 25% (0.754, 0.704 to 0.809) for ischemic heart disease; and 26% (0.736, 0.659 to 0.811) for ischemic stroke. CONCLUSIONS: People who achieve total physical activity levels several times higher than the current recommended minimum level have a significant reduction in the risk of the five diseases studied. More studies with detailed quantification of total physical activity will help to find more precise relative risk estimates for different levels of activity.

Abstract: OBJECTIVE: To quantify the dose-response associations

Populations Analyzed: Author-Stated Funding Source: Bill and Melinda Gates Foundation

Citation: Pandey A, Garg S, Khunger M, et al. Dose-response relationship between physical activity and risk of heart failure: a meta-analysis. *Circulation*. 2015. 132(19):1786-1794. doi:10.1161/CIRCULATIONAHA.115.015853.

UUI.10.1101/CIRCULATIONAHA.1	
Purpose: To determine the	Abstract: BACKGROUND: Prior studies have reported an inverse
categorical and quantitative	association between physical activity (PA) and risk of heart failure
dose-response association	(HF). However, a comprehensive assessment of the quantitative
between physical activity (PA)	dose-response association between PA and HF risk has not been
and risk of heart failure.	reported previously. METHODS AND RESULTS: Prospective cohort
Timeframe: January 1995–	studies with participants >18 years of age that reported association
September 2014	of baseline PA levels and incident HF were included. Categorical
Total # of Studies: 12	dose-response relationships between PA and HF risk were assessed
Exposure Definition: Most	with random-effects models. Generalized least-squares regression
included studies assessed PA by	models were used to assess the quantitative relationship between
self report/questionnaires;	PA (metabolic equivalent [MET]-min/wk) and HF risk across studies
continuous and categorical dose	reporting quantitative PA estimates. Twelve prospective cohort
response between PA in	studies with 20 203 HF events among 370 460 participants (53.5%
metabolic equivalent	women; median follow-up, 13 years) were included. The highest
minutes/week and outcome	levels of PA were associated with significantly reduced risk of HF
assessed. Categorical analyses:	(pooled hazard ratio for highest versus lowest PA, 0.70; 95%
compared 4 categories of PA:	confidence interval, 0.67-0.73). Compared with participants
lowest, light, moderate, and	reporting no leisure-time PA, those who engaged in guideline-
highest. Each PA category	recommended minimum levels of PA (500 MET-min/wk; 2008 US
(highest, moderate, and light	federal guidelines) had modest reductions in HF risk (pooled
PA) was compared with the	hazard ratio, 0.90; 95% confidence interval, 0.87-0.92). In contrast,
lowest PA.	a substantial risk reduction was observed among individuals who
Measures Steps: No	engaged in PA at twice (hazard ratio for 1000 MET-min/wk, 0.81;
Measures Bouts: No	95% confidence interval, 0.77-0.86) and 4 times (hazard ratio for
Examines HIIT: No	2000 MET-min/wk, 0.65; 95% confidence interval, 0.58-0.73) the
Outcomes Addressed: Risk of	minimum guideline-recommended levels. CONCLUSIONS: There is
heart failure. Assessment of	an inverse dose-response relationship between PA and HF risk.
outcome varied by study:	Doses of PA in excess of the guideline-recommended minimum PA
options included self-report,	levels may be required for more substantial reductions in HF risk.
ICD-9/10 codes, medical records	
or patient chart review. Pooled	
hazard ratio or relative risk	
estimated for analyses.	
Examine Cardiorespiratory	
Fitness as Outcome: No	
Populations Analyzed: Male,	Author-Stated Funding Source: University of Texas Southwestern
Female; Adults <55, ≥55;	Medical Center and the American Heart Association
Country/region: U.S. and	
Europe	

Meta-Analysis Citation: Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. *Circulation*. 2011. 124(7):789-795. doi:10.1161/CIRCULATIONAHA.110.010710. **Purpose:** To pool results from **Abstract:** BACKGROUND: No reviews have quantified the specific prospective cohort studies to amounts of physical activity required for lower risks of coronary quantify the dose-response heart disease when assessing the dose-response relation. Instead, relationship between physical previous reviews have used qualitative estimates such as low, activity (PA) and risk of moderate, and high physical activity. METHODS AND RESULTS: We coronary heart disease (CHD), performed an aggregate data meta-analysis of epidemiological including both the amount of studies investigating physical activity and primary prevention of PA required and the magnitude CHD. We included prospective cohort studies published in English of benefit to CHD risk. since 1995. After reviewing 3194 abstracts, we included 33 studies. **Timeframe:** January 1995–July We used random-effects generalized least squares spline models for trend estimation to derive pooled dose-response estimates. 2009 Among the 33 studies, 9 allowed quantitative estimates of leisure-Total # of Studies: 33 time physical activity. Individuals who engaged in the equivalent of Exposure Definition: PA: All 150 min/wk of moderate-intensity leisure-time physical activity types of PA, including leisure (minimum amount, 2008 U.S. federal guidelines) had a 14% lower time PA, walking time or pace, occupational PA, transport PA, coronary heart disease risk (relative risk, 0.86; 95% confidence interval, 0.77 to 0.96) compared with those reporting no leisuretotal PA, and non-leisure PA time physical activity. Those engaging in the equivalent of 300 were included. Analyses min/wk of moderate-intensity leisure-time physical activity (2008) compared highest and lowest PA groups for each type of PA. U.S. federal guidelines for additional benefits) had a 20% (relative risk, 0.80; 95% confidence interval, 0.74 to 0.88) lower risk. At Dose-response analysis also higher levels of physical activity, relative risks were modestly conducted for leisure time PA lower. People who were physically active at levels lower than the (kcal/week). minimum recommended amount also had significantly lower risk Measures Steps: No of coronary heart disease. There was a significant interaction by Measures Bouts: No sex (P=0.03); the association was stronger among women than Examines HIIT: No Outcomes Addressed: CHD men. CONCLUSIONS: These findings provide quantitative data supporting US physical activity guidelines that stipulate that "some incidence. Relative risks physical activity is better than none" and "additional benefits occur estimated in analyses. with more physical activity." **Examine Cardiorespiratory** Fitness as Outcome: No Populations Analyzed: Male, Author-Stated Funding Source: NIH and Donald and Sue Pritzker Female; Adults Scholarship

Citation: Sofi F, Capalbo A, Cesari F, Abbate R, Gensini GF. Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. *Eur J Cardiovasc Prev Rehabil.* 2008. 15(3):247-257. doi:10.1097/HJR.0b013e3282f232ac.

Curulovusc Frev Kellubil. 2008. 15(5).	247-237. doi.10.1097/HJN.00013832821232aC.
Purpose: To evaluate all the	Abstract: BACKGROUND: A vast body of evidence during the
available prospective cohort	last decades has shown the clear preventive role of physical
studies that examined the effect of	activity in cardiovascular disease. The real magnitude of the
leisure time physical activity (LTPA)	association between physical activity during leisure time (LTPA)
on the primary prevention of	and primary prevention of coronary heart disease (CHD) has,
coronary heart disease (CHD)	however, not been completely defined. DESIGN: Meta-analysis
among men and women,	of prospective cohort studies. METHODS: Studies were
considering that only LTPA can	included if they reported relative risks and their corresponding
really be influenced by the	95% confidence intervals (CI), for categories of LTPA in relation
recommendations of guidelines.	to CHD. The LTPA categories of the selected studies were
Timeframe: 1966–May 2007	grouped into three levels of intensity: high, moderate and low.
Total # of Studies: 22	The high level of physical activity was determined, to obtain a
Exposure Definition: Included	level of intensity attainable by the general population.
studies that assessed LTPA in	RESULTS: Data were available for 26 studies, incorporating
various ways. Analyses compared	513,472 individuals (20,666 CHD events), followed up for 4-25
lowest to highest group of LTPA	years. Under a random-effects model, the overall analysis
and lowest to moderate (middle)	showed that individuals who reported performing a high level
group of LTPA.	of LTPA had significant protection against CHD [relative risk
Measures Steps: No	0.73 (95% CI 0.66-0.80), P<0.00001]. A similar significant
Measures Bouts: No	protection against CHD, for individuals who practised a
Examines HIIT: No	moderate level of LTPA, has been also demonstrated [relative
Outcomes Addressed: Risk of CHD.	risk 0.88 (95% CI 0.83-0.93), P<0.0001]. CONCLUSIONS: The
Subgroup analyses conducted by	current meta-analysis reports significant protection against the
follow up time (<13 years, >13	occurrence of CHD resulting from moderate-to-high levels of
years). Relative risk calculated for	physical activity. These results strengthen the
analyses.	recommendations of guidelines that indicate the protective
Examine Cardiorespiratory Fitness	effect against cardiovascular disease of physical activity profiles
as Outcome: No	that are attainable by ordinary people.
Populations Analyzed: Male,	Author-Stated Funding Source: Not Reported
Female; Adults 20–88; Region: U.S.	
vs. non-U.S.	

Citation: Wahid A, Manek N, Nichols M, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. *J Am Heart Assoc.* 2016;5(9):e002495. doi:10.1161/JAHA.115.002495.

19–79	
Populations Analyzed: Adults	Author-Stated Funding Source: British Heart Foundation
Examine Cardiorespiratory Fitness as Outcome: No	moving from inactivity to small amounts of PA.
from those chronic conditions.	and suggested that the greatest gain in health is associated with
diabetes mellitus, and mortality	as T2DM. Effect sizes were generally similar for CVD and T2DM,
disease, stroke, and type 2	including myocardial infarct (MI), stroke, and heart failure, as well
Incidence of cardiovascular	continuous metric for PA levels, we were able to make a comparison of the effect of PA on CVD incidence and mortality
Outcomes Addressed:	adjustment for body weight. CONCLUSIONS: By using a single
Examines HIIT: No	[0.77-0.89]), and (RR, 0.74 [0.72-0.77]), respectively, after
Measures Bouts: No	incidence by 26% (relative risk [RR], 0.77 [0.71-0.84]), (RR, 0.83
Measures Steps: No	of CVD mortality by 23%, CVD incidence by 17%, and T2DM
per week).	intensity aerobic activity per week) was associated with lower risk
metabolic equivalents (hours	achieving recommended PA levels (150 minutes of moderate-
common continuous metric of	to CVD and 3 to T2DM). An increase from being inactive to
data for PA was converted to a	period of 12.3 years) were included in the analysis (33 pertaining
Exposure Definition: Exposure	participants and 179 393 events, during an average follow-up
Total # of Studies: 36	January 1981 to March 2014. A total of 36 studies (3 439 874
Timeframe: 1981–2014	EMBASE electronic databases for all studies published from
and adjusting for body weight.	METHODS AND RESULTS: The search was applied to MEDLINE and
using a single continuous metric	both before and after adjustment for a measure of body weight.
2 diabetes mellitus outcomes,	metric to compare the association between PA and CVD/T2DM,
cardiovascular disease and type	for the very first time we are able to derive a single continuous PA
activity (PA) levels and both	response relationship. In this systematic review and meta-analysis,
association between physical	using categorical measures of PA, masking the shape of the dose-
assess the independent	diabetes mellitus (T2DM) have predominantly been estimated
epidemiological studies that	activity (PA) and both cardiovascular disease (CVD) and type 2
Purpose: To draw together the	Abstract: BACKGROUND: The relationships between physical

Systematic Review

Citation: Warburton DE, Charlesworth, Ivey A, Nettlefold L, Bredin SS. A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults. *Int J Behav Nutr Phys Act.* 2010;7:39. doi:10.1186/1479-5868-7-39.

Purpose: To examine critically the	Abstract: This systematic review examines critically the
current literature to determine	scientific basis for Canada's Physical Activity Guide for Healthy
whether or not a dose-response	Active Living for adults. Particular reference is given to the
relationship exists between	dose-response relationship between physical activity and
habitual physical activity (PA) and	premature all-cause mortality and seven chronic diseases
chronic disease. ((cardiovascular disease, stroke, hypertension, colon cancer,
Timeframe: 1950–2008	breast cancer, type 2 diabetes (diabetes mellitus) and
Total # of Studies: 254	osteoporosis). The strength of the relationship between
Exposure Definition: Any form of	physical activity and specific health outcomes is evaluated
	critically. Literature was obtained through searching electronic
	databases (e.g., MEDLINE, EMBASE), cross-referencing, and
	through the authors' knowledge of the area. For inclusion in
	our systematic review articles must have at least 3 levels of
	physical activity and the concomitant risk for each chronic
	disease. The quality of included studies was appraised using a
	modified Downs and Black tool. Through this search we
	identified a total of 254 articles that met the eligibility criteria
	related to premature all-cause mortality (N = 70),
	cardiovascular disease (N = 49), stroke (N = 25), hypertension
	(N = 12), colon cancer $(N = 33)$, breast cancer $(N = 43)$, type 2
	diabetes (N = 20), and osteoporosis (N = 2). Overall, the current
	literature supports clearly the dose-response relationship
	between physical activity and the seven chronic conditions
	identified. Moreover, higher levels of physical activity reduce
	the risk for premature all-cause mortality. The current
	Canadian guidelines appear to be appropriate to reduce the
	risk for the seven chronic conditions identified above and all-
	cause mortality.
	Author-Stated Funding Source: Public Health Agency of Canada
65	

Meta-Analysis	
	o J, Chen L. Tai chi chuan for the primary prevention of
	a systematic review. Evid Based Complement Alternat Med.
2015;2015:742152. doi:10.1155/2015/74	
Purpose: To attempt to conduct a	Abstract: Background. Stroke is a major healthcare
systematic review and meta-analysis of	problem with serious long-term disability and is one of the
the existing studies on Tai Chi Chuan	leading causes of death in the world. Prevention of stroke
(TCC) exercise as an intervention for the	is considered an important strategy. Methods. Seven
primary prevention of stroke in middle-	electronic databases were searched. Results. 36 eligible
aged and elderly adults, to draw more	studies with a total of 2393 participants were identified.
useful conclusions about the safety and	Primary outcome measures, TCC exercise combined with
efficacy of TCC in preventing stroke, and	other intervention had a significant effect on decreasing
to offer recommendations for future	the incidence of nonfatal stroke (n = 185, RR = 0.11, 95% CI
research.	0.01 to 0.85, P = 0.03) and CCD (n = 125, RR = 0.33, 95% CI
Timeframe: Inception-2013	0.11 to 0.96, P = 0.04). For the risk factors of stroke, pooled
Total # of Studies: 36	analysis demonstrated that TCC exercise was associated
Exposure Definition: Tai Chi Chuan	with lower body weight, BMI, FBG level, and decreasing
exercise for at least 30 minutes and 3	SBP, DBP, plasma TC, and LDL-C level regardless of the
times per week for 4 weeks.	intervention period less than half a year or more than one
Measures Steps: No	year and significantly raised HDL-C level in comparison to
Measures Bouts: No	nonintervention. Compared with other treatments, TCC
Examines HIIT: No	intervention on the basis of the same other treatments in
Outcomes Addressed: Primary	patients with chronic disease also showed the beneficial
outcome of incidence of fatal or	effect on lowering blood pressure. Conclusion. The present
nonfatal stroke or cardia-	systematic review indicates that TCC exercise is beneficially
cerebrovascular disease. Secondary	associated with the primary prevention of stroke in middle-
outcomes included any modification	aged and elderly adults by inversing the high risk factors of
risk factor of stroke (e.g., blood	stroke.
pressure, blood lipids, fasting blood	
glucose).	
Examine Cardiorespiratory Fitness as	
Outcome: No	
Populations Analyzed: Adults ≥30	Author-Stated Funding Source: State Administration of
	Traditional Chinese Medicine of China

Meta-Analysis	
-	olk A, Nguyen VT, Ehrlich F. Quantifying the dose-response of
<u> </u>	ease risk: meta-analysis. Eur J Epidemiol. 2009;24(4):181-192.
doi:10.1007/s10654-009-9328-9.	
Purpose: To examine the relationship	Abstract: The evidence for the efficacy of walking in reducing
between dose of walking and	the risk of and preventing coronary heart disease (CHD) is not
response in reducing coronary heart	completely understood. This meta-analysis aimed to quantify
disease (CHD) risk for both men and	the dose-response relationship between walking and CHD risk
women in the general population.	reduction for both men and women in the general
Timeframe: 1954–September 2007	population. Studies on walking and CHD primary prevention
Total # of Studies: 12	between 1954 and 2007 were identified through Medline,
Exposure Definition: Walking:	SportDiscus and the Cochrane Database of Systematic
included studies that used various	Reviews. Random-effect meta-regression models were used
assessments of walking (distance	to pool the relative risks from individual studies. A total of 11
walked, frequency, time, pace, etc.).	prospective cohort studies and one randomized control trial
All measures converted to metabolic	study met the inclusion criteria, with 295,177 participants
equivalent (MET) hours per week.	free of CHD at baseline and 7,094 cases at follow-up. The
Dose-response analyses conducted	meta-analysis indicated that an increment of approximately
by type of walking measurement	30 min of normal walking a day for 5 days a week was
(MET hours/week, kilometers/hour,	associated with 19% CHD risk reduction (95% CI = 14-23%; P-
and hours/week).	heterogeneity = 0.56; I (2) = 0%). We found no evidence of
Measures Steps: No	heterogeneity between subgroups of studies defined by
Measures Bouts: No	gender (P = 0.67); age of the study population (P = 0.52); or
Examines HIIT: No	follow-up duration ($P = 0.77$). The meta-analysis showed that
Outcomes Addressed: Risk of CHD:	the risk for developing CHD decreases as walking dose
fatal and nonfatal myocardial	increases. Walking should be prescribed as an evidence-based
infarction and angina pectoris.	effective exercise modality for CHD prevention in the general
Subgroup analyses by: follow-up	population.
duration, <6 years or >6 years.	
Relative risk estimated.	
Examine Cardiorespiratory Fitness	
as Outcome: No	Author Stated Funding Courses Nat Davastad
Populations Analyzed: Male, Female;	Author-Stated Funding Source: Not Reported
Adults <55, >55	

AMSTARExBP: SR/MA					
	Diep, 2010	Echouffo- Tcheugui, 2015	Куи, 2016	Pandey, 2015	Sattelmair, 2011
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	Yes	Yes	Yes	Yes	Yes
Comprehensive literature search performed.	Yes	Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	Yes	Yes	Yes	Yes	Yes
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	No	No	No	No
List of studies (included and excluded) provided.	No	No	No	No	No
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	No	Yes	Yes	Yes
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	Yes	Yes	No
Results depended on study quality, either overall, or in interaction with moderators.	No	Yes	Yes	Yes	N/A
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	Yes	Yes	N/A
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	Yes	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	Yes	Yes	Yes
Individual-level meta-analysis used.	No	No	No	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	Yes	Yes	Yes	Yes
Conflict of interest disclosed.	Yes	Yes	Yes	Yes	Yes

Table 3. Existing Systematic Review and Meta-Analyses Quality Assessment Chart

Table 3. Existing Systematic Review and Meta-Analyses Quality Assessment Chart (continued)
--

AMSTARExBP: SR/MA	Sofi,	Wahid,	Warburt	Zheng,	Zheng,
	2008	2016	on, 2010	2015	2009
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	Yes	Yes	Yes	No	Yes
Comprehensive literature search performed.	Yes	Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	No	Yes	Yes	Yes	Yes
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	No	No	Yes	Yes
List of studies (included and excluded) provided.	No	Yes	No	Yes	No
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	No	No	N/A	No	Yes
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	Yes	Yes	No
Results depended on study quality, either overall, or in interaction with moderators.	Yes	Yes	Yes	No	N/A
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	Yes	Yes	N/A
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	N/A	Yes	Yes
Effect size index chosen justified, statistically.	Yes	Yes	N/A	Yes	Yes
Individual-level meta-analysis used.	No	No	N/A	No	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	Yes	No	No	Yes
Conflict of interest disclosed.	No	Yes	Yes	Yes	No

Appendices

Appendix A: Analytical Framework

<u>Topic Area</u>

Exposure

Systematic Review Questions

What is the relationship between physical activity and cardiovascular disease incidence?

- a) Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b) Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?

Population

Adults, 18 years and older

Exposure

All types and intensities of physical activity, including lifestyle activities/leisure activities

Comparison

Adults who participate in varying levels of physical activity

Endpoint Health Outcomes

Cardiovascular disease incidence

Key Definitions

Scope of CVD:

- Coronary heart disease/ischemic heart disease.
- Coronary artery disease
- Stroke
- Heart failure

Exclusion:

Congenital heart disease

Appendix B: Final Search Strategy

Search Strategy: PubMed (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: PubMed; Date of Search: 2/16/2017; 395 results

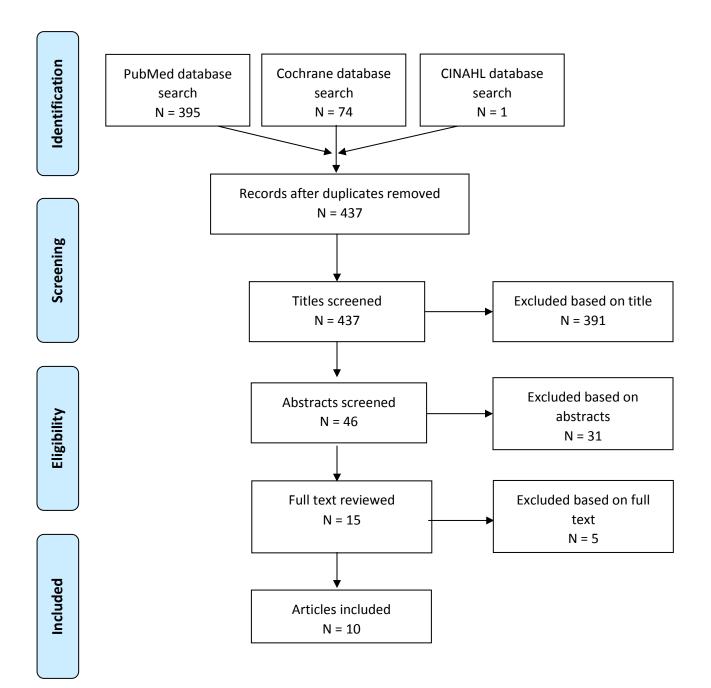
Set	Search Strategy
Cardiovascular Disease	(("Arteriosclerosis"[mh] OR "Heart failure"[mh] OR "Myocardial ischemia"[mh] OR "myocardial infarction"[mh] OR "Stroke"[mh] OR "Subarachnoid hemorrhage"[mh] OR "Intracranial hemorrhages"[mh]) OR ((Arteriosclero*[tiab] OR Atherosclero*[tiab] OR "Cerebral infarction"[tiab] OR "Cerebrovascular diseases"[tiab] OR "Cerebrovascular disease"[tiab] OR "Coronary heart disease"[tiab] OR "Heart failure"[tiab] OR "Intracerebral Hemorrhage"[tiab] OR "Intracerebral Hemorrhages"[tiab] OR "Intracerebral Hemorrhage"[tiab] OR "Intracranial hemorrhages"[tiab] OR "Intracranial hemorrhage"[tiab] OR "Intracranial hemorrhages"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "Ischemic heart diseases"[tiab] OR "Ischemic heart disease"[tiab]) NOT medline[sb]))
Risk	AND ("risk"[tiab] OR "risks"[tiab] OR "Incidence"[tiab] OR "incident"[tiab] OR "incidents"[tiab] OR "risk"[mh] OR "Incidence"[mh])
Physical Activity	AND (("Exercise"[mh] OR "Exercise"[tiab] OR "Physical activity"[tiab] OR "Sedentary lifestyle"[mh]) OR (("Aerobic activities"[tiab] OR "Aerobic activity"[tiab] OR "Cardiovascular activities"[tiab] OR "Cardiovascular activity"[tiab] OR "Endurance activities"[tiab] OR "Endurance activity"[tiab] OR "Energy expenditure"[tiab] OR "Resistance training"[tiab] OR "strength training"[tiab] OR "physical conditioning"[tiab] OR "walking"[tiab]) NOT medline[sb]))
Limit: Publication Type Include Systematic Reviews/Meta- Analyses	AND (systematic[sb] OR meta-analysis[pt] OR "systematic review"[tiab] OR "systematic literature review"[tiab] OR metaanalysis[tiab] OR "meta analysis"[tiab] OR metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled analysis"[tiab] OR "pooled analyses"[tiab] OR "pooled data"[tiab])
Limit: Publication Type Exclude Systematic Reviews/Meta- Analyses	NOT ("comment"[Publication Type] OR "editorial"[Publication Type])
Limit: Language Limit: Exclude Animal Only	AND (English[lang]) NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))
Limit: Exclude Child Only	NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) AND "adult"[Mesh]))

Set	Search Strategy
Limit:	AND ("2006/01/01"[PDAT] : "3000/12/31"[PDAT])
Publication	
Date	

Search Strategy: CINAHL (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: CINAHL; Date of Search: 2/17/2017; 1 unique result Terms searched in title or abstract

Set	Search Strategy
Cardiovasc ular Disease	("Arteriosclerosis" OR "Cerebral infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR "Intracranial hemorrhages" OR "Myocardial ischemia" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhage" OR "Subarachnoid hemorrhages" OR "Ischemic heart diseases" OR "Ischemic heart disease")
Risk	AND ("risk" OR "risks" OR "Incidence" OR "incident" OR "incidents" OR "risk" OR "Incidence")
Physical Activity	AND ("Aerobic activities" OR "Aerobic activity" OR "Cardiovascular activities" OR "Cardiovascular activity" OR "Endurance activities" OR "Endurance activity" OR "Energy expenditure" OR "Exercise" OR "Physical activity" OR "Resistance training" OR "Sedentary lifestyle" OR "strength training" OR "physical conditioning" OR "walking")
Systematic Reviews and Meta- Analyses	AND ("systematic review" OR "systematic literature review" OR metaanalysis OR "meta analysis" OR metanalyses OR "meta analyses"" OR "pooled analysis" OR "pooled analyses" OR "pooled data")
Limits	2006-present English language Peer reviewed Exclude Medline records Human


Search Strategy: Cochrane (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: Cochrane; Date of Search: 2/16/17; 74 results Terms searched in title, abstract, or keywords

Set	Search Terms
Cardiovascular Disease	("Arteriosclerosis" OR "Cerebral infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR "Intracranial hemorrhages" OR "Myocardial ischemia" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhage" OR "Subarachnoid hemorrhages" OR "Ischemic heart diseases" OR "Ischemic heart disease")
Risk	AND ("risk" OR "risks" OR "Incidence" OR "incident" OR "incidents" OR "risk" OR "Incidence")
Physical Activity	AND ("Aerobic activities" OR "Aerobic activity" OR "Cardiovascular activities" OR "Cardiovascular activity" OR "Endurance activities" OR "Endurance activity" OR "Energy expenditure" OR "Exercise" OR "Physical activity" OR "Resistance training" OR "Sedentary lifestyle" OR "strength training" OR "physical conditioning" OR "walking")
Limits	2006-present Word variations not searched Cochrane Reviews and Other Reviews

Appendix C: Literature Tree

Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports Literature Tree

Appendix D: Inclusion/Exclusion Criteria

Exposure Subcommittee

What is the relationship between physical activity and cardiovascular disease incidence?

- a) Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b) Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?

Category	Inclusion/Exclusion Criteria	Notes/Rationale
Publication	Include:	
Language	 Studies published with full text in English 	
Publication Status	Include:	
	 Studies published in peer-reviewed journals 	
	• Reports determined to have appropriate suitability	
	and quality by PAGAC	
	Exclude:	
	Grey literature, including unpublished data,	
	manuscripts, abstracts, conference proceedings	
Research Type	Include:	
	Original research	
	Meta-analyses	
	Systematic reviews	
	• Reports determined to have appropriate suitability	
	and quality by PAGAC	
Study Subjects	Include:	
	Human subjects	
Age of Study	Include:	
Subjects	 18 years of age and above 	
Health Status of	Include:	
Study Subjects	 Only studies conducted in general population. 	
	 Studies referring to "walkers" or "runners" that 	
	are not clearly high performance athletes should	
	be included.	
	Exclude:	
	 Studies on patients with existing cardiovascular disease. 	
Comparison	 Studies on high performance athletes. Include studies in which the comparison is: 	
	• Adults exposed to different doses of physical	
	activity.	
Date of	Include:	
Publication	 Studies published after 2006 	

Study	Include:	
Design/Type of	Systematic reviews	
Research	Meta-analyses	
	• Report	
	Pooled analysis	
	Exclude:	
	 Original research articles 	
	Literature reviews	
	Commentaries	
Size of Study	Include:	
Groups	• All	
	Exclude:	
	No criteria	
Intervention/	Include studies that:	
Exposure	 Assess all types and intensities of physical activity, 	
	including lifestyle, leisure, occupational, and	
	transportation activity.	
	• All measures of physical activity dose or exposure	
	will be considered EXCEPT for fitness (see	
	exclusion criteria).	
	Exclude:	
	Studies of a specific therapeutic or rehabilitation	
	exercise for patients with existing cardiovascular disease.	
	 Exposure measured by a single measure of 	
	physical fitness (cardiovascular fitness, strength,	
	flexibility, walking speed in older adults): Where	
	the measure of physical activity is based only on	
	physical fitness measures (single or combined	
	variables).	
	 Studies that assess sedentary behavior as 	
	exposure (TV viewing, computer games, sitting-	
	time, sleep, other).	
	• Studies that do not include physical activity (or the	
	lack thereof) as the primary exposure variable or	
	used solely as a confounding variable.	
Outcome	Include studies in which the outcome is:	
	Cardiovascular disease incidence:	
	 Coronary heart disease/ischemic heart 	
	disease	
	 Coronary artery disease Stroke of all types 	
	 Stroke of all types Heart failure 	
	Exclude:	
	Congenital heart disease	
	 Studies on progression of cardiovascular disease 	
	- Staties on progression of calulovascular disease	

Multiple	Include: More than one article per data set. **Note	
Publications of	if re-analysis of dataset evaluated for 2008.	
Same Data	Exclude: No restriction	

Appendix E: Rationale for Exclusion at Abstract or Full-Text Triage for Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search
Arena R, Myers J, Forman DE, Lavie CJ, Guazzi M. Should high-intensity-aerobic interval training become the clinical standard in heart failure?. <i>Heart</i> <i>Fail Rev.</i> 2013;18(1):95-105. doi: 10.1007/s10741- 012-9333-z.		Х			
Arena R, Myers J, Guazzi M. The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. <i>Heart Fail Rev.</i> 2008; 13(2):245-269.		х		х	
Audrey S, Procter S, Cooper A, et al. Employer schemes to encourage walking to work: feasibility study incorporating an exploratory randomized controlled trial. In: <i>Public Health Research</i> , No. 3.4. Southampton, UK: NIHR Journals Library; 2015. doi: 10.3310/phr03040.			х		
Boodhwani, M, Andelfinger, G, Leipsic, J, et al. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. <i>Can J</i> <i>Cardiol.</i> 2014;30(6):577-589. doi: 10.1016/j.cjca.2014.02.018.		х			
Borges, JP, Lessa, MA. Mechanisms involved in exercise-induced cardioprotection: a systematic review. <i>Arq Bras Cardiol.</i> 2015;105(1):71-81. doi:10.5935/abc.20150024.					х
Burtscher, M, Ponchia, A. The risk of cardiovascular events during leisure time activities at altitude. <i>Prog</i> <i>Cardiovasc Dis.</i> 2010;52(6):507-511. doi:10.1016/j.pcad.2010.02.008.					х
Cassar K. Peripheral arterial disease. <i>BMJ Clinical Evidence</i> . 2011;2011:0211.		х		х	
Chiu M, Austin PC, Manuel DG, Tu JV. Comparison of cardiovascular risk profiles among ethnic groups using population health surveys between 1996 and 2007. <i>CMAJ</i> . 2010;182(8):E301-E310. doi:10.1503/cmaj.091676.			х		
Chou R, Arora B, Dana T, Fu R, Walker M, Humphrey L. Screening asymptomatic adults for coronary heart disease with resting or exercise electrocardiography: systematic review to update the 2004 U.S. Preventive Services Task Force recommendation. In: <i>Evidence Synthesis No. 88.</i> AHRQ Publication No. 11- 05158-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; September 2011.				x	
Cole JA, Smith SM, Hart N, Cupples ME. Systematic review of the effect of diet and exercise lifestyle interventions in the secondary prevention of		х			

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search
coronary heart disease. <i>Cardiol Res Pract</i> . 2011;2011:232351. doi:10.4061/2011/232351.					
Conraads VM, Van Craenenbroeck EM, De Maeyer C, Van Berendoncks AM, Beckers PJ, Vrints CJ. Unraveling new mechanisms of exercise intolerance in chronic heart failure: role of exercise training. <i>Heart Fail Rev.</i> 2013;18(1):65-77. doi: 10.1007/s10741-012-9324-0.			х		
Dalusung-Angosta, A. The impact of Tai Chi exercise on coronary heart disease: a systematic review. <i>J Am</i> <i>Acad Nurse Pract.</i> 2011;23(7):376-381. doi: 10.1111/j.1745-7599.2011.00597.x.					х
Desveaux L, Beauchamp M, Goldstein R, Brooks D. Community-based exercise programs as a strategy to optimize function in chronic disease: a systematic review. <i>Med Care</i> . 2014; 52(3):216-226. doi:10.1097/MLR.00000000000065.	x				
Dupree CS. Primary prevention of heart failure: an update. <i>Curr Opin Cardiol.</i> 2010;25(5):478-483. doi:10.1097/HCO.0b013e32833cd550.					х
e Silva Ade S, da Mota MP. Effects of physical activity and training programs on plasma homocysteine levels: a systematic review. <i>Amino Acids</i> . 2014;46(8):1795-1804. doi:10.1007/s00726-014- 1741-z.	x				
Ebrahim S, Taylor F, Ward K, Beswick A, Burke M, Davey Smith G. Multiple risk factor interventions for primary prevention of coronary heart disease. <i>Cochrane Database Syst Rev.</i> 2011;1:CD001561. doi:0.1002/14651858.CD001561.pub3.				х	
Englert HS, Diehl HA, Greenlaw RL, Willich SN, Aldana S. The effect of a community-based coronary risk reduction: the Rockford CHIP. <i>Prev Med</i> . 2007;44(6):513-519.			х		
Fuentes B, Gallego J, Gil-Nunez A, et al. Guidelines for the preventive treatment of ischaemic stroke and TIA (I). Update on risk factors and life style. <i>Neurologia</i> . 2012;27(9):560-574. doi: 10.1016/j.nrl.2011.06.002.					х
Gjevestad GO, Holven KB, Ulven SM. Effects of exercise on gene expression of inflammatory markers in human peripheral blood cells: a systematic review. <i>Curr Cardiovasc Risk Rep.</i> 2015;9(7):34.	x				
Goldstein LB, Adams R, Alberts MJ, et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research					х

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search
Interdisciplinary Working Group. <i>Stroke</i> . 2006;37(6):1583-1633.					
Haffey TA. How to avoid a heart attack: putting it all together. <i>J Am Osteopath Assoc.</i> 2009;109(5 suppl):S14-S20.			х		
Hartley L, Lee MS, Kwong JSW, Flowers N, Todkill D, Ernst E, Rees K. Qigong for the primary prevention of cardiovascular disease. <i>Cochrane Database Syst Rev.</i> 2015;6:CD010390. doi:10.1002/14651858.CD010390.pub2.					x
Harvard Medical School. Walk more to slash your stroke risk. New research confirms that regular walking helps to prevent stroke. How many steps are required to make a difference?. <i>Harv Mens Health</i> <i>Watch.</i> 2014;18(8):1,7.			х		
Kelley GA, Kelley KS. Efficacy of aerobic exercise on coronary heart disease risk factors. <i>Prev Cardiol.</i> 2008;11(2):71-75.	х				
Keteyian SJ. Exercise training in congestive heart failure: risks and benefits. <i>Prog Cardiovasc Dis.</i> 2011;53(6):419-428. doi:10.1016/j.pcad.2011.02.005.		х			
Korczak D, Dietl M, Steinhauser G. Effectiveness of programmes as part of primary prevention demonstrated on the example of cardiovascular diseases and the metabolic syndrome. <i>GMS Health</i> <i>Technology Assessment</i> . 2011;7:Doc02. doi:10.3205/hta000093.				x	
Lin JS, O'Connor E, Whitlock E, et al. Behavioral counseling to promote physical activity and a healthful diet to prevent cardiovascular disease in adults: update of the evidence for the U.S. Preventive Services Task Force. <i>Evidence Synthesis</i> <i>No. 79.</i> AHRQ Publication No. 11-05149-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; December 2010.				х	
Loomba RS, Arora R. Prevention of coronary heart disease in women. <i>Ther Adv Cardiovasc Dis.</i> 2008;2(5):321-327. doi:10.1177/1753944708093511.				х	х
McKelvie RS. Heart failure. <i>BMJ Clin Evid</i> . 2011. pii:0204.				х	
Palmefors H, DuttaRoy S, Rundqvist B, Borjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis-a systematic review. <i>Atherosclerosis</i> . 2014;235(1):150-161. doi:10.1016/j.atherosclerosis.2014.04.026.	x				
Reimers CD, Knapp G, Reimers AK. Exercise as stroke prophylaxis. <i>Dtsch Arztebl Int</i> . 2009;106(44):715-721. doi:10.3238/arztbl.2009.0715.					х
Ricciardi AC, Lopez-Cancio E, Perez de la Ossa N, et al. Prestroke physical activity is associated with good functional outcome and arterial recanalization after	х	х			

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search
stroke due to a large vessel occlusion. <i>Cerebrovasc</i> <i>Dis.</i> 2014;37(4):304-311. doi:10.1159/000360809.					
Vinereanu D. Risk factors for atherosclerotic disease: present and future. <i>Herz</i> . 2006;31(3 suppl):5-24.			х		
Walden R, Tomlinson B. Cardiovascular disease. In: Benzie IFF, Wachtel-Galor S, eds. <i>Herbal Medicine:</i> <i>Biomolecular and Clinical Aspects.</i> 2nd ed. Boca Raton, FL: CRC Press/Taylor & Francis; 2011. Chapter 16. Available from: https://www.ncbi.nlm.nih.gov/books/NBK92767/			х		
Wang J, Wen X, Li W, Li X, Wang Y, Lu W. Risk factors for stroke in the Chinese population: a systematic review and meta-analysis. <i>J Stroke Cerebrovasc Dis.</i> 2017;26(3):509-517.					х

References

1. Warburton DE, Charlesworth, Ivey A, Nettlefold L, Bredin SS. A systematic review of the evidence for Canada's Physical Activity Guidelines for Adults. *Int J Behav Nutr Phys Act*. 2010;7:39. doi:10.1186/1479-5868-7-39.

2. Diep L, Kwagyan J, Kurantsin-Mills J, Weir R, Jayam-Trouth A. Association of physical activity level and stroke outcomes in men and women: a meta-analysis. *J Womens Health (Larchmt)*. 2010;19(10):1815-1822. doi:10.1089/jwh.2009.1708.

3. Echouffo-Tcheugui JB, Butler J, Yancy CW, Fonarow GC. Association of physical activity or fitness with incident heart failure: a systematic review and meta-analysis. *Circ Heart Fail*. 2015;8(5):853-861. doi:10.1161/CIRCHEARTFAILURE.115.002070.

4. Kyu HH, Bachman VF, Alexander LT, et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. *BMJ*. 2016;354:i3857. doi:10.1136/bmj.i3857.

5. Pandey A, Garg S, Khunger M, et al. Dose-response relationship between physical activity and risk of heart failure: a meta-analysis. *Circulation*. 2015;132(19):1786-1794. doi:10.1161/CIRCULATIONAHA.115.015853.

6. Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. *Circulation*. 2011;124(7):789-795. doi:10.1161/CIRCULATIONAHA.110.010710.

7. Sofi F, Capalbo A, Cesari F, Abbate R, Gensini GF. Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. *Eur J Cardiovasc Prev Rehabil*. 2008;15(3):247-257. doi:10.1097/HJR.0b013e3282f232ac.

8. Wahid A, Manek N, Nichols M, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. *J Am Heart Assoc.* 2016;5(9):e002495. doi:10.1161/JAHA.115.002495.

9. Zheng G, Huang M, Liu F, Li S, Tao J, Chen L. Tai chi chuan for the primary prevention of stroke in middle-aged and elderly adults: a systematic review. *Evid Based Complement Alternat Med*. 2015;2015:742152. doi:10.1155/2015/742152.

10. Zheng H, Orsini N, Amin J, Wolk A, Nguyen VT, Ehrlich F. Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis. *Eur J Epidemiol*. 2009;24(4):181-192. doi:10.1007/s10654-009-9328-9.