Evidence Portfolio – Exposure Subcommittee, Question 4¹

What is the relationship between step count per day and (1) all-cause and cardiovascular disease mortality and (2) incidence for cardiovascular disease events and risk of type 2 diabetes?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?

Sources of Evidence: Original Research

Conclusion Statements and Grade:

Insufficient evidence is available to determine whether a relationship exists between step counts per day and all-cause and cardiovascular disease mortality. **PAGAC Grade: Not assignable.**

Limited evidence suggests that step count per day is associated with reduced incidence of cardiovascular disease events and risk of type 2 diabetes. **PAGAC Grade: Limited.**

Limited evidence suggests a dose-response relationship between the measure of steps per day and cardiovascular disease events and type 2 diabetes risk. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether the relationship between the measure of steps per day and cardiovascular disease events and type 2 diabetes risk is influenced by age, sex, race/ethnicity, socioeconomic status, or weight status. **PAGAC Grade: Not assignable.**

Description of the Evidence

An initial search for systematic reviews, meta-analyses, pooled analyses, and reports did not identify sufficient literature to answer the research question as determined by the Exposure Subcommittee. A complete de novo search of original research was conducted.

Original Research

Overview

A total of 9 original research studies that examined the relationship between step counts and different health outcomes were included as sources of evidence. Of these, 4 were prospective cohort studies, $\frac{1-4}{4}$ 4 were cross-sectional studies, $\frac{5-8}{2}$ and 1 was a randomized control trial.⁹ The studies were published between 2011 and 2017.

The analytical sample size ranged from 68^{9} to 7,118.¹ Of the studies that reported location, 1 was conducted in Brazil,⁵ 1 in Canada,⁶ 1 in the United Kingdom,⁸ 1 in Finland,⁹ and 1 in Australia.²

¹ Question 1 in Chapter 1. Physical Activity Behaviors: Steps, Bouts, And High Intensity Training

Exposure

All the included studies examined step counts per day. All studies used pedometers to measure steps, except for <u>Herzig et al</u>,⁹ in which the authors used an accelerometer.

Outcomes

The majority of the studies examined cardiometabolic risk factors, including blood glucose levels, using measures such as fasting and 2-hour plasma glucose. One study examined metabolic syndrome¹ and 1 examined risk of having a cardiovascular event.⁴ No study was found that examined the relationship between step counts per day and mortality (all-cause or disease-specific).

Populations Analyzed

The table below lists the populations analyzed in each article.

Table 1. Populations Analyzed by All Sources of Evidence

	Sex	Race/ Ethnicity	Age	Weight Status	Chronic Conditions	Other
Colpani, 2013	Female		Adults 45–72			Postmenopausal; Perimenopausal/ Premenopausal
Herzig, 2014		White	Mean age 58.8	Overweight and Obese		Impaired fasting glucose or glucose tolerance
Huffman, 2014			Adults ≥50		Existing cardiovascular disease (if ≥50) or with at least 1 additional cardiovascular risk factor (if ≥55)	Impaired glucose tolerance
Johnson, 2017			Adults ≥55			
Newton, 2013		Black or African American	Adults 37–81			
Ponsonby, 2011			Adults ≥25			
Yates, 2015			Adults ≥50		Existing cardiovascular disease (if ≥50) or with at least 1 additional cardiovascular risk factor (if ≥55)	Impaired glucose tolerance
Yates, 2014			Adults ≥50		Existing cardiovascular disease (if ≥50) or with at least 1 additional cardiovascular risk factor (if ≥55)	Impaired glucose tolerance
Yates, 2013		White European, South Asian	Mean age 64			High risk of impaired glucose regulation

Supporting Evidence

Original Research

Table 2. Original Research Individual Evidence Summary Tables

Original Research

Citation: Colpani V, Oppermann K, Spritzer PM. Association between habitual physical activity and lower cardiovascular risk in premenopausal, perimenopausal, and postmenopausal women: a population-based study. *Menopause*. 2013;20(5):525-531. doi:10.1097/GME.0b013e318271b388.

Purpose: To measure pedometer-determined habitual PA in a Brazilian cohort of premenopausal, perimenopausal, and postmenopausal women and to assess its effect on anthropometric measures and cardiovascular disease risk factors.

Study Design: Cross-sectional study	Abstract:
Location: Brazil	OBJECTIVE: Menopause is associated with an increased risk of
Sample: 292	cardiovascular disease. Habitual physical activity, defined as
Attrition Rate: 18.43%	any form of body movement with energy expenditure above
Sample Power: Not Reported	resting levels, may improve health parameters. We assessed
Intervention: No	the level of habitual physical activity and its effect on
Exposure Measurement	anthropometric measures and cardiovascular risk factors in a
Self-Reported:	cohort of premenopausal, perimenopausal, and
Device-Measured: Pedometer:	postmenopausal women. METHODS: This cross-sectional study
habitual physical activity (steps/day)	is nested on a longitudinal population-based study that was
measured for 7 days and averaged.	begun in 1995 in the city of Passo Fundo, Brazil. For the
Participants were classified as	present analysis, 292 women were included. Anthropometric
physically inactive (maximum of	and metabolic profile was evaluated. Habitual physical activity
5,999 steps/day) or active (≥6,000	was assessed by a digital pedometer for 7 days, and
steps/day).	participants were stratified into active and inactive (>/=6,000
Measures Steps: Yes	and <6,000 steps/day, respectively). RESULTS: The mean (SD)
Measures Bouts: No	age was 57.1 (5.4) years. The average number of steps per day
Examines HIIT: No	for the total sample was 5,250.7 (3,372.9): 3,472.4 (1,570.2) in
	the inactive group (61.8%) and 9,055.9 (3,033.4) in the active
	group (31.9%). A negative and statistically significant
	correlation was found between physical activity and smoking
	(P = -0.019), body mass index (P = -0.006), waist circumference
	(P = -0.013), and waist-to-hip ratio of 0.85 or higher (P = -
	0.043). Inactive women presented a higher risk of
	overweight/obesity (odds ratio [OR], 2.1; 95% CI, 1.233-3.622;
	P = 0.006) and waist circumference larger than 88 cm (OR, 1.7;
	95% Cl, 1.054-2.942; P = 0.03), even after adjustment for age,
	menopause status, smoking, and hormone therapy. Inactive
	women also had a higher risk of diabetes mellitus (OR, 2.7;
	95% Cl, 1.233-6.295; P = 0.014) and metabolic syndrome (OR,
	2.5, 95% CI, 1.443-4.294; P = 0.001). CONCLUSIONS: Habitual
	physical activity, specifically walking 6,000 or more steps daily,
	was associated with a decreased risk of cardiovascular disease
	and diabetes in middle-aged women, independently of
	menopause status.

Refers to Other Materials: Yes	Outcomes Examined: Cardiovascular disease risk factors: Body
Examine Cardiorespiratory Fitness	weight and height (BMI), waist circumference, hip
as Outcome: No	circumference, waist-to-hip ratio, total cholesterol, high
	density lipoprotein cholesterol, triglycerides, glucose, low-
	density lipoprotein cholesterol, dichotomous hypertension.
	Diabetes: self-report, use of anti-diabetic drugs, or a fasting
	blood glucose level of 126 mg/dL or higher.
Populations Analyzed: Female;	Author-Stated Funding Source: Conselho Nacional de
Adults 45–72; Postmenopausal,	Desenvolvimento Científico e Tecnologico.
Perimenopausal/Premenopausal.	

Original Research

Citation: Herzig KH, Ahola R, Leppäluoto J, Jokelainen J, Jämsä T, Keinänen-Kiukaanniemi S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. *Int J Obes (Lond).* 2014;38(8):1089-1096. doi:10.1038/ijo.2013.224.

Purpose: To investigate the effects of a 3-month structured aerobic walking exercise on fasting and 2-hour glucose and insulin concentrations and lipid homeostasis in sedentary overweight subjects with impaired fasting glucose and/or impaired glucose tolerance.

Study Design: Randomized trial	Abstract:
Location: Finland	OBJECTIVE: To examine physical activity (PA) thresholds
Sample: 68	affecting glucose, insulin and lipid concentrations and
Attrition Rate: 12.82%	body fat composition in high-risk patients for type 2
Sample Power: Yes	diabetes (T2D). INTERVENTION: A total of 113 subjects of
Intervention: Yes	both genders having abnormal glucose levels in the oral
Intervention Type: Provision of	glucose tolerance test were contacted. A total of 78
information/education, behavioral	subjects with age 58.8±10.4 years and body mass index
Intervention Length: 12 weeks	31.7±5.3 kgm_2 were randomly assigned to intervention
Exposure Measurement	and control groups. Intervention consisted of a supervised
Self-Reported: Leisure-time PA assessed	walking (60 min three times weekly) for 3 months. All the
by questionnaire and converted in	subjects received standard care for PA and weight
metabolic equivalent hours per week	reduction and wore an accelerometer during the whole
using reported intensity and duration.	wakeful time. RESULTS: Over 80% of the daily steps
Device-Measured: Accelerometer: mean	clustered at an acceleration level of 0.3–0.7 g (2–3 km h_1
total number of steps per day and	of walking) and were 5870 in the intervention and 4434 in
number of steps at different	the control group (Po0.029). Between 0 and 3 months no
acceleration; classes were used to	significant changes were observed in fasting and 2-h
describe PA during the 12-week trial.	glucose, body weight or maximal oxygen uptake. In
Daily steps were further classified into	contrast, changes in fasting and 2-h insulin (_3.4mUl_1,
quartiles (I: 1,780–2,810, II: 2,940–4,010,	P¼0.035 and _26.6, P¼0.003, respectively), homeostasis
III: 4,010–6,020, IV: 6,520–21,000).	model assessment-estimated insulin resistance (_1.0,
Measures Steps: Yes	P¼0.036), total cholesterol (_0.55 mmol l_1, P¼0.041),
Measures Bouts: No	low-density lipoprotein (LDL) cholesterol (_0.36 mmol l_1,
Examines HIIT: No	P¼0.008) and visceral fat area (_5.5 cm2, P¼0.030) were
Exposure/Intervention	significantly greater in the intervention than in control
Frequency: 3 times per week	subjects. The overall effects of PA were analyzed by
Intensity: Low intensity (walking speed	quartiles of daily steps of all subjects. There were
of 3–4 kilometers/hour)	significant reductions in total and LDL cholesterol and
Time: 60 minutes (2 intervals of 20	visceral fat area between the highest (daily steps over
minute walking with a 5-minute	6520) and the lowest quartile (1780–2810 daily steps).
stretching/balance break in between;	The changes associated with PA remained significant after
after 1.5 months, 45 minutes of	adjustments of baseline, sex, age and body weight
continuous walking.	change. CONCLUSION: Habitual and structured PAs with
Type: Cardiorespiratory: walking;	the acceleration levels of 0.3–0.7 g and daily steps over
balance and flexibility: break and cool	6520, equivalent to walking at 2–3 km h_1 for 90 min
down	daily, standing for the relative PA intensity of 30–35% of
	the maximal oxygen uptake, are clinically beneficial for
	overweight/obese and physically inactive individuals with
	a high risk for T2D.

Exposure Subcommittee: Q4. What is the relationship between step count per day and (1) all-cause and cardiovascular disease mortality and (2) incidence for cardiovascular disease events and risk of type 2 diabetes?

Refers to Other Materials: Yes	Outcomes Examined: Fasting and 2-hour glucose and
Adverse Events Addressed: No	insulin: compare baseline and after 3-month intervention.
Examine Cardiorespiratory Fitness as	
Outcome: Yes	
Populations Analyzed: White; Mean age	Author-Stated Funding Source: Finnish Diabetes
58.8; Overweight and obese; Impaired	Foundation, Pohjois-Pohjanmaa Hospital District, and
fasting glucose or glucose tolerance.	Oulu University Hospital.

Original Research Citation: Huffman KM, Sun JL, Thomas L, et al. Impact of baseline physical activity and diet behavior on metabolic syndrome in a pharmaceutical trial: results from NAVIGATOR. Metabolism. 2014;63(4):554-561. doi:10.1016/j.metabol.2014.01.002. **Purpose:** To assess the association between PA (pedometer steps) at baseline and metabolic syndrome. **Study Design:** Prospective cohort Abstract: study OBJECTIVE: The cardiometabolic risk cluster metabolic syndrome (MS) includes >/=3 of elevated fasting glucose, Location: Not Reported hypertension, elevated triglycerides, reduced high-density Sample: 7,118 lipoprotein cholesterol (HDL-c), and increased waist Attrition Rate: 23.51% circumference. Each can be affected by physical activity and Sample Power: Not Reported diet. Our objective was to determine whether determine Intervention: No whether baseline physical activity and/or diet behavior impact MS in the course of a large pharmaceutical trial. **Exposure Measurement** MATERIALS/METHODS: This was an observational study from Self-Reported: Pedometer, daily steps. NAVIGATOR, a double-blind, randomized (nateglinide, valsartan, both, or placebo), controlled trial between 2002 and Device-Measured: Pedometer, daily 2004. We studied data from persons (n=9306) with impaired steps; subsequently median daily glucose tolerance and cardiovascular disease (CVD) or CVD risk steps categorized into quartiles. factors; 7118 with pedometer data were included in this Measures Steps: Yes analysis. Physical activity was assessed with 7-day pedometer Measures Bouts: No records; diet behavior was self-reported on a 6-item survey. Examines HIIT: No An MS score (MSSc) was calculated using the sum of each MS Refers to Other Materials: Yes component, centered around the Adult Treatment Panel III **Examine Cardiorespiratory Fitness** threshold, and standardized according to sample standard as Outcome: No deviation. Excepting HDL-c, assessed at baseline and year 3, **Populations Analyzed:** Adults ≥50; MS components were assessed yearly. Follow-up averaged 6 years. RESULTS: For every 2000-step increase in average daily Impaired glucose tolerance and steps, there was an associated reduction in average MSSc of existing cardiovascular disease (if 0.29 (95% CI (-)0.33 to (-)0.25). For each diet behavior ≥50) or with at least 1 additional endorsed, there was an associated reduction in average MSSc cardiovascular risk factor (if \geq 55). of 0.05 (95% CI (-)0.08 to (-)0.01). Accounting for the effects of pedometer steps and diet behavior together had minimal impact on parameter estimates with no significant interaction. Relations were independent of age, sex, race, region, smoking, family history of diabetes, and use of nateglinide, valsartan, aspirin, antihypertensive, and lipid-lowering agent. CONCLUSIONS: Baseline physical activity and diet behavior were associated independently with reductions in MSSc such that increased attention to these lifestyle elements provides cardiometabolic benefits. Thus, given the potential to impact outcomes, assessment of physical activity and diet should be performed in pharmacologic trials targeting cardiometabolic risk.

Outcomes Examined: Metabolic syndrome score: calculated as
the sum of each continuous component (fasting glucose,
triglycerides, high-density lipoprotein cholesterol, mean
arterial pressure [(systolic blood pressure +2 x diastolic blood
pressure)/3], and waist circumference), which was centered
around the sex-specific sample standard deviation.
Author-Stated Funding Source: Novartis Pharmaceuticals.
pressure)/3], and waist circumference), which was centered around the sex-specific sample standard deviation. Author-Stated Funding Source: Novartis Pharmaceuticals.

Original Research

Citation: Johnson ST, Eurich DT, Lytvyak E, et al. Walking and type 2 diabetes risk using CANRISK scores among older adults. *Appl Physiol Nutr Metab.* 2017;42(1):33-38. doi:10.1139/apnm-2016-0267.

Purpose: To determine whether objective estimates of ambulatory activity (i.e., pedometer steps) were associated with diabetes risk, while accounting for demographic, health, and neighborhood walkability variables.

Study Design: Cross-sectional study	Abstract:
Location: Canada	The objective of this study was to determine the association between pedometer-assessed steps and type 2 diabetes risk
Sample: 689	using the Public Health Agency of Canada-developed 16-item
Attrition Rate: 46.04%	Canadian Diabetes Risk Questionnaire (CANRISK) among a
Sample Power: Not Reported	large population-based sample of older adults across Alberta,
Intervention: No	Canada. To achieve our study objective, adults without type 2 diabetes (N = 689) aged 55 years and older provided
Exposure Measurement	demographic data and CANRISK scores through computer-
Device-Measured: Pedometer: number of steps for each of 3 consecutive days, recorded by participant, to be averaged into daily step counts (7,500 steps/day was considered "sufficiently active" while less than 7,500 steps/day was "insufficiently active"). Dose- response also assessed using tertiles of step counts (≤3,719; 3,720–6,811; and ≥6,812). Measures Steps: Yes	assisted telephone interviews between September and November 2012. Respondents also wore a step pedometer over 3 consecutive days to estimate average daily steps. Logistic regression was used to assess the association between achieving 7500 steps/day and risk of diabetes (low vs. moderate and high). Overall, 41% were male, average age was 63.4 (SD 5.5) years, body mass index was 26.7 (SD 5.0) kg/m2, and participants averaged 5671 (SD 3529) steps/day. All respondents indicated they were capable of walking for at least 10 min unassisted. CANRISK scores ranged from 13-60, with 18% in the low-risk category (<21). After adjustment, those not achieving 7500 steps/day (n = 507) were more than twice as likely to belong to the higher risk categories for type 2 diabetes compared with those walking >/=7500 steps/day (n = 182) (73.6% vs. 26.4%; odds ratio: 2.37; 95% confidence interval: 1.58 - 3.57). Among older adults without diabetes,
Measures Bouts: No	
Refers to Other Materials: Ves	
Examine Cardiorespiratory Fitness	
as Outcome: No	daily steps were strongly and inversely associated with diabetes risk using the CANRISK score. Walking remains an important modifiable risk factor target for type 2 diabetes and achieving at least 7500 steps/day may be a reasonable target for older adults.
	Outcomes Examined: Type II diabetes risk: Canadian Diabetes
	Risk Questionnaire.
Populations Analyzed: Adults ≥55	Author-Stated Funding Source: Alberta Innovates – Health
	Solutions.

Original Research Citation: Newton RL Jr, Han H, Johnson WD, et al. Steps/day and metabolic syndrome in African American adults: the Jackson Heart Study. Prev Med. 2013;57(6):855-859. doi:10.1016/j.ypmed.2013.09.018. Purpose: To assess the relationship between pedometer-measured step count data and metabolic syndrome in a large sample of African American adults. Abstract: Study Design: Cross-sectional study Location: Not Reported **OBJECTIVE:** To examine the relationship between pedometer-measured step count data and the Metabolic **Sample:** 379 Syndrome (MetS) in African American adults. METHOD: Attrition Rate: 21.20% 379 African American adults (mean age 60.1 years; 60% Sample Power: Not Reported female) enrolled in the Jackson Heart Study (Jackson, MS) Intervention: No from 2000 to 2004 provided sufficient pedometer data for **Exposure Measurement** inclusion in this analysis. MetS was classified according to Self-Reported: Step log, participants the International Diabetes Federation Task Force on recorded daily steps at the end of each Epidemiology and Prevention. RESULTS: Using steps/day day. categorized as tertiles (<3717 (referent), 3717-6238, Device-Measured: Pedometer: daily >6238), participants taking 3717-6238 (Odds Ratio steps for 3 consecutive days. Steps/day (OR)(95% Confidence Interval (CI))=0.34 (0.19, 0.61)) and was categorized into tertiles (tertile 1 >6238 steps/day (OR(95% CI)=0.43 (0.23, 0.78)) had lower was <3,717 steps/day, tertile 2 was odds of having MetS compared to participants in the 3,717–6,238 steps/day, and tertile 3 was lowest tertile. Using previously suggested steps/day cut->6,238 steps/day) and categories ("basal points (<2500 (referent), 2500-4999, 5000-7499, activity" was <2,500 steps/day, "limited >/=7500), the odds of having MetS were lower for activity" was 2,500–4,999 steps/day, participants taking 2500-4999 (OR(95% CI)=0.32 (0.14, "low active" was 5,000-7,499 steps/day, 0.72)), 5000-7499 (OR(95% CI)=0.22 (0.09, 0.53)), and and "somewhat active" to "highly >7500 (OR(95% CI)=0.26 (0.11, 0.65)) steps/day compared active" was \geq 7,500 steps/day). to those taking <2500 steps/day. CONCLUSION: Compared Measures Steps: Yes to lower levels, higher levels of steps/day are associated Measures Bouts: No with a lower prevalence of MetS in this older African Examines HIIT: No American population. Refers to Other Materials: Yes Outcomes Examined: Metabolic syndrome (MetS): any 3 **Examine Cardiorespiratory Fitness as** of the following 5 criteria were required to meet MetS definition: (1) large waist circumference (≥102 cm for men Outcome: No and \geq 88 cm for women); (2) high triglyceride levels (\geq 150 mg/dL or on drug treatment); (3) low high-density lipoprotein cholesterol levels (\leq 40 mg/dL for men and \leq 50 mg/dL in women or on drug treatment); (4) elevated blood pressure (\geq 130 mm Hg systolic or \geq 85 mm Hg diastolic or on drug treatment); or, (5) elevated fasting glucose (≥100 mg/dL or on drug treatment). Populations Analyzed: Black or African Author-Stated Funding Source: National Heart, Lung, and American; Adults 37–81 Blood Institute; National Institute on Minority Health and Health Disparities; National Institute on Biomedical Imaging and Bioengineering.

Original Research			
Citation: Ponsonby AL, Sun C, Ukoumunne	OC, et al. Objectively measured physical activity and the		
subsequent risk of incident dysglycemia: tl	he Australian Diabetes, Obesity and Lifestyle Study		
(AusDiab). Diabetes Care. 2011;34(7):1497	7-1502. doi:10.2337/dc10-2386.		
Purpose: To investigate pedometer-measu	red PA in 2000 and change in PA over 5 years with		
subsequent risk of dysglycemia by 2005.			
Study Design: Prospective cohort study	Abstract:		
Location: Australia	OBJECTIVE: To investigate pedometer-measured physical		
Sample: 458	activity (PA) in 2000 and change in PA over 5 years with		
Attrition Rate: 0	subsequent risk of dysglycemia by 2005. RESEARCH		
Sample Power: Not Reported	DESIGN AND METHODS: This prospective cohort study in		
Intervention: No	Tasmania, Australia, analyzed 458 adults with normal		
Exposure Measurement	glucose tolerance and a mean (SD) age of 49.7 (12.1) years		
Self-Benorted: Active Australia	in 2000. Variables assessed in 2000 and 2005 included PA,		
Questionnaire frequency and duration	by pedometer and questionnaire, nutrient intake, and		
of PA in the previous week. A weighted	other lifestyle factors. Incident dysglycemia was defined		
sum of the responses (with vigorous-	as the development of impaired fasting glucose or		
intensity activity given double-	impaired glucose tolerance revealed by oral glucose		
weighting) was calculated to quantify	tolerance testing in 2005, without type 2 diabetes.		
total hours of PA	RESULTS: Incident dysglycemia developed in 26		
Device-Measured: Pedometer:	participants during the 5-year period. Higher daily steps in		
steps/day.were measured for 2	2000 were independently associated with a lower 5-year		
consecutive days at baseline and 5 years	risk of incident dysglycemia (adjusted odds ratio [AOR]		
later and averaged Daily steps were	0.87 [95% CI 0.77-0.97] per 1.000-step increment). Higher		
classified into 5 categories: persistent	daily steps in 2005, after controlling for baseline steps in		
low steps (the lowest third tertile of	2000 (thus reflecting change in steps over 5 years), were		
daily steps in both 2000 and 2005)	not associated with incident dysglycemia (AOR 1.02 [0.92-		
decreasing steps (dronned by 1 or 2	1.14]). Higher daily steps in 2000 were also associated		
categories between 2000 and 2005)	with lower fasting blood glucose, but not 2-h plasma		
persistent moderate steps (middle third	glucose by 2005. Further adjustment for BMI or waist		
at both waves) increasing steps	circumference did not remove these associations.		
(increase of 1 or 2 categories) and	CONCLUSIONS: Among community-dwelling adults, a		
nersistent high stens (highest third at	higher rate of daily steps is associated with a reduced risk		
hoth waves)	of incident dysglycemia. This effect appears to be not fully		
Massures Stens: Ves	mediated through reduced adiposity.		
Measures Bouts: No			
Examines HIT: No			
Refers to Other Materials: Ves	Outcomes Examined: Incident dysalvcemia: facting		
Examine Cardiorespiratory Eitness as	plasma glucose and 2-bour plasma glucose levels were		
Outcome: No	measured after a 5-year follow-up		
Populations Analyzed: Adults ≥25	Author-Stated Funding Source: Pharmaceutical		
	companies, laboratories, Australian Kidney Foundation,		
	Diabetes Australia, Queensland Health, South Australian,		
	i asmanian and victorian Department of Human Services,		
	and Health Department of Western Australia.		

Original Research

Citation: Yates T, Davies MJ, Haffner SM, et al. Physical activity as a determinant of fasting and 2-h post-challenge glucose: a prospective cohort analysis of the NAVIGATOR trial. *Diabet Med*. 2015;32(8):1090-1096. doi:10.1111/dme.12762.

Purpose: To investigate whether previous PA levels are associated with blood glucose levels in individuals with impaired glucose tolerance in the context of an international pharmaceutical trial.

Study Design: Prospective cohort	Abstract:
study	AIM: To investigate whether previous physical activity levels
Location: Not Reported	are associated with blood glucose levels in individuals with
Sample: 3964	impaired glucose tolerance in the context of an international
Attrition Rate: 57.40%	pharmaceutical trial. METHODS: Data were analyzed from
Sample Power: Not Reported	the NAVIGATOR trial, which involved 9306 individuals with
Intervention: Yes	impaired glucose tolerance and high cardiovascular risk from
Intervention Type: Provision of	40 different countries, recruited in the period 2002-2004.
information/education, behavioral	Fasting glucose, 2-h post-challenge glucose and physical
Intervention Length: 12 months	activity (pedometer) were assessed annually. A longitudinal
Exposure Measurement	regression analysis was used to determine whether physical
Self-Reported:	activity levels 2 years (t-2) and 1 year (t-1) previously were
Device-Measured: Pedometer, daily	associated with levels of glucose, after adjusting for previous
step count was recorded by	glucose levels and other patient characteristics. Those
participants in a log book. Pedometers	participants with four consecutive annual measures of
were worn for 7 consecutive days.	glucose and two consecutive measures of physical activity
Habitual PA levels were measured as	were included in the analysis. RESULIS: The analysis
the average number of steps taken	included 3964 individuals. Change in physical activity from t-
per day (total summed pedometer	2 to t-1 and activity levels at t-2 were both associated with
counts divided by the number of days	2-h glucose levels after adjustment for previous glucose
that data were captured).	levels and baseline characteristics; however, the
Measures Steps: Yes	associations were weak: a 100% increase in physical activity
Measures Bouts: No	was associated with a 0.9% reduction in 2-h glucose levels.
Examines HIIT: No	In addition, previous physical activity only explained an
Exposure/Intervention	additional 0.05% of the variance in 2-h glucose over the
Frequency: Personnel within each site	variance explained by the history of 2-h glucose alone $(R(2) = 0.2472)$ where $R(2)$ is a subscription with factors
administered the program at each	0.3473 VS. 0.3468). There was no association with fasting
clinic visit (at 0.5, 1, 3, 6, and 12	glucose. CONCLOSIONS: In the context of a large
months).	international clinical trial, previous physical activity levels did
Intensity: Not Specified	hot meaningfully innuence glucose levels in those with a
lime: Lifestyle intervention designed	night lisk of childhic disease, after taking into account
to help increase PA to 150	participants previous trajectory of glucose control.
lype: Cardiorespiratory. The	
NAVIGATOR Study Intervention	
included educational material and	
remorcement calls. No additional	
description in the present manuscript.	Outcomes Franciscoli Factional Second States
Refers to Uther Materials: Yes	Outcomes Examined: Fasting glucose levels; 2-hour glucose
Adverse Events Addressed: No	levels.

Author-Stated Funding Source: Novartis Pharmaceuticals.

Original Research			
Citation: Yates T, Haffner SM, Schulte PJ, et al. Association between change in daily ambulatory			
activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a			
cohort analysis. Lancet. 2014;383(9922):1059-1066. doi:10.1016/S0140-6736(13)62061-9.			
Purpose: To investigate whether baseline a	and change in objectively assessed ambulatory activity is		
associated with the risk of a cardiovascular	event in individuals at high cardiovascular risk with		
impaired glucose tolerance.			
Study Design: Prospective cohort study	Abstract:		
Location: Not Reported	Background The extent to which change in physical		
Sample: 4,345	activity can modify the risk of cardiovascular disease in		
Attrition Rate: 46%	individuals at high cardiovascular risk is uncertain. We		
Sample Power: Not Reported	investigated whether baseline and change in objectively-		
Intervention: Yes	assessed ambulatory activity is associated with the risk of		
Intervention Type: Provision of	a cardiovascular event in individuals at high		
information/education, behavioral	cardiovascular risk with impaired glucose tolerance.		
Intervention Length: 12 months	Methods We assessed prospective data from the		
Exposure Measurement	NAVIGATOR trial involving 9306 individuals with impaired		
Device-Measured: Pedometer, habitual	glucose tolerance who were recruited in 40 countries		
ambulatory activity (steps/day) was	between January, 2002, and January, 2004. Participants		
assessed. Change in ambulatory activity	also either had existing cardiovascular disease (if age >50		
(calculated by subtracting pedometer	years) or at least one additional cardiovascular risk factor		
counts at 12 months from those at	(If age =55 years). Participants were followed-up for		
baseline). Results reported by category of	cardiovascular events (defi ned as cardiovascular		
change (more than 1,500 step per day	mortality, non-fatal stroke, or myocardial infarction) for 6		
decrease, 0–1,500 step per day decrease,	years on average and had ambulatory activity assessed by		
1–1,500 step per day increase, or more	pedometer at baseline and 12 months. Adjusted Cox		
than 1,500 step per day increase) from	proportional nazard models quantified the association of		
baseline to 12 months.	baseline and change in ambulatory activity (from baseline		
Measures Steps: Yes	to 12 months) with the risk of a subsequent		
Measures Bouts: No	calculovascular event, alter adjustment for each other and		
Examines Hill: NO	with ClinicalTrials gov NCT00007786. Eindings During 45		
Exposure/Intervention	211 person-years follow-up 521 cardiovascular events		
Frequency: Program administered at	accurred Baceline ambulatory activity (bazard ratio [HP]		
each clinic visit (at 0.5, 1, 3, 6, and 12	per 2000 steps per day 0.90, 95% CL 0.84-0.96) and		
months).	change in ambulatory activity $(0.92, 0.86-0.90)$ and		
Time: Lifestule intervention designed to	inversely associated with the risk of a cardiovascular		
help increase DA to 150 minutes (week	event Results for change in ambulatory activity were		
Type: The NAVICATOR study intervention	unaff ected when also adjusted for changes in hody-mass		
included educational material and	index and other notential confounding variables at 12		
reinforcement calls. No additional	months. Interpretation In individuals at high		
description in the present manuscript	cardiovascular risk with impaired glucose tolerance, both		
Before to Other Materiale Vec	baseline levels of daily ambulatory activity and change in		
Adverse Events Addressed: No	ambulatory activity display a graded inverse association		
Evamine Cardiorechizatory Eitness as	with the subsequent risk of a cardiovascular event.		
Outcome: No description in the present	Funding Novartis Pharmaceuticals.		
manuscrint			
ուսուսշարն			

Populations Analyzed: Adults ≥ 50,	Outcomes Examined: Risk of a cardiovascular event: a
Individuals with impaired glucose	single cardiovascular composite of time to death from
tolerance and either existing	cardiovascular causes or non-fatal myocardial infarction
cardiovascular disease (if ≥50) or with at	or non-fatal stroke.
least 1 additional cardiovascular risk	
factor (if ≥55).	Author-Stated Funding Source: Novartis
	Pharmaceuticals.

Original Research Citation: Yates T, Henson J, Khunti K, et al. Effect of physical activity measurement type on the association between walking activity and glucose regulation in a high-risk population recruited from primary care. Int J Epidemiol. 2013;42(2):533-540. doi:10.1093/ije/dyt015. Purpose: To establish, through a multi-ethnic cohort recruited from primary care, whether the strength of the association of walking activity with glucose regulation varies across 2 of the most widely used self-reported and objective measures: the International Physical Activity Questionnaire and the pedometer. Study Design: Cross-sectional study Abstract: BACKGROUND: We investigate associations of self-Location: United Kingdom reported and objectively assessed walking activity with Sample: 2,532 Attrition Rate: 26.60% measures of glucose regulation in a multi-ethnic population at high risk of type 2 diabetes. METHODS: This Sample Power: Not Reported study reports data from a 2009-2011 screening Intervention: No programme for impaired glucose regulation (IGR) within a **Exposure Measurement** high-risk primary care population in Leicestershire, UK; Self-Reported: IPAQ, total moderate-to-2532 participants (38% women, 8% South Asian) with a vigorous intensity physical activity mean age of 64 +/- 8 years and an average BMI of 32.1 +/-(MVPA) and walking activity (metabolic 5.6 kg/m(2) were included. Walking activity was measured equivalent hours/week). Low, moderate, by self-report (International Physical Activity and high tertiles of walking and Questionnaire) and objectively (pedometer). Glucose steps/day created for analysis. regulation assessments included 2h post-challenge Device-Measured: Pedometer: glucose, fasting glucose and HbA1c. RESULTS: Higher ambulatory activity measured over 7 levels of self-reported walking activity and pedometer consecutive days, averaged, and steps were associated with lower 2h post-challenge reported as steps/day. Further placed glucose after controlling for several known confounding into low, moderate, and high tertiles. variables, including BMI. Similarly, when categorized in Measures Steps: Yes tertiles, both measures were associated with a lower odds Measures Bouts: No of having any form of IGR; odds ratio for lowest vs highest Examines HIIT: No tertile was 0.64 (0.51-0.80) for self-report and 0.69 (0.55-0.87) for pedometer steps. There was no significant difference between self-reported and objective measures in the strength of associations with glucose regulation; associations with self-report were maintained when further adjusted for pedometer steps. Stronger associations between self-reported walking activity and glucose regulation were observed in South Asians compared with White Europeans. CONCLUSIONS: Selfreported and objectively measured walking activity were equally associated with indices of glucose regulation. Associations with self-reported walking activity were maintained when further adjusted for pedometer steps, suggesting that self-reported walking activity may measure facets of physical activity that are beyond total volume.

Refers to Other Materials: Yes	Outcomes Examined: Oral glucose tolerance test:				
Examine Cardiorespiratory Fitness as	diagnosis of diabetes; impaired fasting glucose; impaired				
Outcome: No	glucose tolerance; impaired glucose regulation; HbA1c.				
Populations Analyzed: White European,	Author-Stated Funding Source: National Institute for				
South Asian; Mean age 64; High risk of	Health Research.				
impaired glucose regulation.					

Table 3. Original Research Bias Assessment Chart

Nutrition Evidence Library (NEL) Bias Assessment Tool (BAT): Original Research					
	Colpani, 2013	Herzig, 2014	Huffma n, 2014	Johnson , 2017	Newton , 2013
(???) = Can't Determine					
Inclusion/exclusion criteria similar across study groups.	Yes	N/A	Yes	Yes	Yes
Strategy for recruiting or allocating participants similar across study groups.	Yes	N/A	Yes	Yes	Yes
Allocation sequence randomly generated.	N/A	Yes	N/A	N/A	N/A
Group allocation concealed (i.e., assignments could not be predicted).	N/A	Yes	N/A	N/A	N/A
Distribution of critical confounding factors similar across study groups at baseline, or analysis controlled for differences between groups.	Yes	Yes	Yes	Yes	Yes
Accounted for variations in execution of study from proposed protocol or research plan.	N/A	N/A	N/A	N/A	N/A
Adherence to study protocols similar across study groups.	Yes	Yes	Yes	Yes	Yes
Investigators accounted for unintended concurrent exposures that were differentially experienced by study groups and might bias results.	Yes	Yes	Yes	Yes	No
Participants blinded to their intervention or exposure status.	N/A	No	N/A	N/A	N/A
Investigators blinded to participants intervention or exposure status.	N/A	No	N/A	N/A	N/A
Outcome assessors blinded to participants intervention or exposure status.	Yes	Yes	Yes	Yes	Yes
Valid and reliable measures used consistently across study groups to assess inclusion/exclusion criteria, exposures, outcomes, and confounders.	Yes	Yes	Yes	Yes	Yes
Length of follow-up similar across study groups.	N/A	Yes	Yes	N/A	Yes
In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.	N/A	N/A	Yes	No	Yes
Other sources of bias taken into account in design and/or analysis of study through matching or other statistical adjustment.	Yes	Yes	Yes	Yes	Yes
Adequate statistical methods used to assess primary outcomes.	Yes	Yes	Yes	Yes	Yes

Nutrition Evidence Library (NEL) Bias Assessment Tool (BAT): Original Research				
	Ponson by, 2011	Yates, 2015	Yates, 2014	Yates, 2013
(???) = Can't Determine				
Inclusion/exclusion criteria similar across study groups.	N/A	N/A	Yes	Yes
Strategy for recruiting or allocating participants similar across study groups.	N/A	N/A	Yes	Yes
Allocation sequence randomly generated.	N/A	N/A	N/A	N/A
Group allocation concealed (i.e., assignments could not be predicted).	N/A	N/A	N/A	N/A
Distribution of critical confounding factors similar across study groups at baseline, or analysis controlled for differences between groups.	N/A	N/A	Yes	Yes
Accounted for variations in execution of study from proposed protocol or research plan.	Yes	Yes	Yes	N/A
Adherence to study protocols similar across study groups.	N/A	N/A	Yes	Yes
Investigators accounted for unintended concurrent exposures that were differentially experienced by study groups and might bias results.	Yes	Yes	Yes	Yes
Participants blinded to their intervention or exposure status.	N/A	N/A	N/A	N/A
Investigators blinded to participants' intervention or exposure status.	N/A	N/A	N/A	N/A
Outcome assessors blinded to participants' intervention or exposure status.	Yes	Yes	Yes	Yes
Valid and reliable measures used consistently across study groups to assess inclusion/exclusion criteria, exposures, outcomes, and confounders.	No	Yes	Yes	Yes
Length of follow-up similar across study groups.	Yes	N/A	Yes	N/A
In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.	N/A	Yes	N/A	No
Other sources of bias taken into account in design and/or analysis of study through matching or other statistical adjustment.	Yes	Yes	Yes	Yes
Adequate statistical methods used to assess primary outcomes.	Yes	Yes	Yes	Yes

Appendices

Appendix A: Analytical Framework

<u>Topic Area</u> Exposure

Systematic Review Question

What is the relationship between step count per day and (1) all-cause and cardiovascular disease mortality and (2) incidence for cardiovascular disease events and risk of type 2 diabetes?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, weight status, or socio-economic status?

Population

Adults, 18 years and older

<u>Exposure</u>

• PA performed in **step counts** per day assessed with a device.

Comparison

• Different step counts per day

Endpoint Health Outcomes

- All-cause and cardiovascular disease (CVD) mortality
- CVD incidence
- Type 2 diabetes incidence

Exposure Subcommittee: Q4. What is the relationship between step count per day and (1) all-cause and cardiovascular disease mortality and (2) incidence for cardiovascular disease events and risk of type 2 diabetes?

Key Definitions

Scope of CVD incidence:

- Coronary heart disease/ischemic heart disease
- Coronary artery disease
- Stroke
- Heart failure

Exclusion:

Congenital heart disease

Appendix B: Final Search Strategy

Search Strategy: PubMed (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: PubMed; Date of Search: 5/4/2017; 233 results

Set	Search Strategy
Physical activity	(("Activity bouts"[tiab] OR "Daily steps"[tiab] OR "High intensity activity"[tiab] OR "Interval training"[tiab] OR "Pedometer"[tiab] OR "Step count"[tiab] OR "Steps/day"[tiab] OR 'high intensity interval training'[tiab]) OR ((("High intensity"[tiab] AND "training")[tiab] OR 'Interval training'[tiab] OR 'Pedometer'[tiab]) NOT medline[sb])
Limit: Publication Type Include (Systematic Reviews/Meta- Analyses)	AND (systematic[sb] OR meta-analysis[pt] OR review [tiab] OR "systematic review"[tiab] OR "systematic literature review"[tiab] OR metaanalysis[tiab] OR "meta analysis"[tiab] OR metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled analysis"[tiab] OR "pooled analyses"[tiab] OR "pooled data"[tiab])
Limit: Publication Type Exclude (Systematic Reviews/Meta- Analyses)	NOT ("comment"[Publication Type] OR "editorial"[Publication Type])
Limit: language	AND (English[lang])
Limit: Exclude animal only	NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))
Limit: Exclude child only	NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) AND "adult"[Mesh]))

Search Strategy: CINAHL (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: CINAHL; Date of Search: 5/4/2017; 16 results Terms searched in title or abstract

Set	Search Strategy
Physical activity	("Activity bouts" OR "Daily steps" OR "High intensity activity" OR "Interval training"
	OR Pedometer OR "Step count" OR "Steps/day" OR 'high intensity interval training"
	OR ("High intensity" AND "training"))
Systematic	AND
Reviews and	("systematic review" OR "systematic literature review" OR review OR metaanalysis
Meta-Analyses	OR "meta analysis" OR metanalyses OR "meta analyses"" OR "pooled analysis" OR
	"pooled analyses" OR "pooled data")
Limits	English language
	Peer reviewed
	Exclude Medline records
	Human
	All years searched

Search Strategy: Cochrane (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: Cochrane; Date of Search: 5/4/17; 25 results Terms searched in title, abstract, or keywords

Set	Search Terms
Physical	("Activity bouts" OR "Daily steps" OR "High intensity activity" OR "Interval training"
activity	OR Pedometer OR "Step count" OR "Steps/day" OR "high intensity interval training"
	OR ("High intensity" AND training))
Limits	Word variations not searched
	Cochrane Reviews and Other Reviews
	All years searched

Search Strategy: PubMed (Original Research)

Set	Search Strategy
Steps	(("Walking"[mh] OR "Pedometer"[tiab] OR "Step count"[tiab] OR "Steps/day"[tiab] OR "Daily steps"[tiab]) OR (("Walking"[tiab]) NOT medline[sb]))
(Cardiovascular disease OR Type 2 diabetes)	AND (("Arteriosclerosis"[mh] OR "Heart failure"[mh] OR "Myocardial ischemia"[mh] OR "myocardial infarction"[mh] OR "Stroke"[mh] OR "Subarachnoid hemorrhage"[mh] OR "Intracranial hemorrhages"[mh] OR "insulin resistance"[mh] OR "Blood glucose"[mh] OR "insulin resistance"[tiab] OR Hyperglycemia[mh] OR "Diabetes Mellitus, Type 2"[mh]) OR ((Arteriosclero*[tiab] OR Atherosclero*[tiab] OR "Cerebral infarction"[tiab] OR "Cerebrovascular diseases"[tiab] OR "Cerebrovascular disease"[tiab] OR "Coronary heart disease"[tiab] OR "Cerebrovascular disease"[tiab] OR "Intracerebral Hemorrhages"[tiab] OR "Intracerebral Hemorrhage"[tiab] OR "Intracerebral Hemorrhages"[tiab] OR "Intraceranial hemorrhage"[tiab] OR "Intraceranial hemorrhages"[tiab] OR "myocardial infarction"[tiab] OR "Stroke"[tiab] OR "Subarachnoid hemorrhages"[tiab] OR "Ischemic heart disease"[tiab]) NOT medline[sb]))
Incidence OR Mortality	AND ("risk"[tiab] OR "risks"[tiab] OR "Incidence"[tiab] OR "incident"[tiab] OR "Death"[mh] OR "Death"[tiab] OR "Dying"[tiab] OR Fatal*[tiab] OR Mortalit*[tiab] OR "Mortality"[mh] OR "Postmortem"[tiab])
Limit: Publication Type Exclude (Original)	NOT ("comment" [Publication Type] OR "editorial" [Publication Type] OR "review" [Publication Type] OR systematic[sb] OR "meta-analysis" [publication type] OR "systematic review" [tiab] OR "systematic literature review" [tiab] OR metaanalysis[tiab] OR "meta analysis" [tiab] OR metanalyses [tiab] OR "meta analyses" [tiab] OR "pooled analysis" [tiab] OR "pooled analyses" [tiab] OR "pooled data" [tiab])
Limit: Language	(English[lang])
Limit: Exclude animal only	NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))
Limit: Date	("2011/01/01"[PDAT] : "3000/12/31"[PDAT])
Limit: Exclude	NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT
child only	(("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) AND "adult"[Mesh]))

Database: PubMed; Date of Search: 6/28/2017; 454 results

Search Strategy: CINAHL (Original Research)

Database: CINAHL; Date of Search: 6/28/2017; 26 results Terms searched in title or abstract

Set	Search Strategy
Steps	("Pedometer" OR "Step count" OR "Steps/day" OR "Daily steps" OR "Walking")
(Cardiovascular disease OR Type 2 Diabetes)	AND (Arteriosclero* OR "Arteriosclerosis" OR Atherosclero* OR "Cerebral infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR "Intracranial hemorrhages" OR "Myocardial ischemia" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhage" OR "Subarachnoid hemorrhages" OR "Ischemic heart diseases" OR "Ischemic heart disease" OR "insulin resistance" OR "Blood glucose" OR Hyperglycemia OR "Diabetes Mellitus, Type 2")
Incidence OR Mortality	AND ("risk" OR "risks" OR "Incidence" OR "incident" OR "Death" OR "Dying" OR Fatal* OR Mortalit* OR "Mortality" OR "Postmortem")
Original Research	NOT ("systematic review" OR "systematic literature review" OR metaanalysis OR "meta analysis" OR metanalyses OR "meta analyses"" OR "pooled analysis" OR "pooled analyses" OR "pooled data")
Limits	English language Peer reviewed Exclude Medline records Human 2011-present

Search Strategy: Cochrane (Original Research)

Database: Cochrane; Date of Search: 6/28/17; 286 results Terms searched in title, abstract, or keywords

Set	Search Terms
Steps	("Pedometer" OR "Step count" OR "Steps/day" OR "Daily steps" OR "Walking")
(Cardiovascular	AND
disease OR Type 2 diabetes)	(Arteriosclero* OR "Arteriosclerosis" OR Atherosclero* OR "Cerebral infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR "Intracranial hemorrhages" OR "Myocardial ischemia" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhage" OR "Subarachnoid hemorrhages" OR "Ischemic heart diseases" OR "Ischemic heart disease" OR "insulin resistance" OR "Blood glucose" OR Hyperglycemia OR "Diabetes Mellitus, Type 2")
Risk OR	AND
Mortality	("risk" OR "risks" OR "Incidence" OR "incident" OR "Death" OR "Dying" OR Fatal* OR Mortalit* OR "Mortality" OR "Postmortem")
Limits	Trials Word variations will not be searched 2011-present

Appendix C: Literature Tree

Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports Literature Tree

Original Research Literature Tree

Appendix D: Inclusion/Exclusion Criteria

Exposure Subcommittee

What is the relationship between step count per day and (1) all-cause and cardiovascular disease mortality and (2) incidence for cardiovascular disease events and risk of type 2 diabetes?

a. Is there a dose-response relationship? If yes, what is the shape of the relationship?b. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?

Category	Inclusion/Exclusion Criteria	Notes/Rationale
Publication	Include:	
Language	 Studies published with full text in English 	
Publication Status	Include:	
	 Studies published in peer-reviewed journals 	
	 Reports determined to have appropriate suitability 	
	and quality by PAGAC	
	Exclude:	
	 Grey literature, including unpublished data, 	
	manuscripts, abstracts, conference proceedings	
Research Type	Include:	
	Original research	
	Meta-analyses	
	Systematic reviews	
	Reports determined to have appropriate suitability	
	and quality by PAGAC	
Study Subjects	Include:	
	Human subjects	
Age of Study	Include:	
Subjects	• 18 years of age and above	
Health Status of		
Study Subjects	 Only studies conducted in general population. 	
	Exclude:	
	 Studies on natients with existing cardiovascular 	
	disease.	
	 Studies on high performance athletes. 	
Comparison	Include studies in which the comparison is:	
	 Adults exposed to different doses of step counts. 	
Date of	Include:	
Publication	• 2011–present	
Study	Include:	
Design/Type of	 Original research articles 	
research	 Cross-sectional studies 	
	 Longitudinal/cohort 	
	 Intervention studies 	

	Exclude:	
	Systematic reviews	
	Meta-analyses	
	• Report	
	Pooled analysis	
	literature reviews	
	Commentaries	
Size of Study	Include:	
Groups	• All	
Intervention/	Include:	
Exposure	 Studies that qualify steps per day as an exposure 	
	(no other measure of walking should be included).	
	Exclude:	
	 Exposure measured by a single measure of 	
	physical fitness (cardiovascular fitness, strength,	
	flexibility, walking speed in older adults)	
	• Studies of a specific therapeutic exercise (range of	
	motion exercise, inspiratory muscle training)	
Outcome	Include studies in which the outcome is:	
	 All-cause and cardiovascular disease (CVD) 	
	mortality	
	CVD incidence	
	Type 2 diabetes incidence	
	Exclude:	
	Congenital heart disease	
	Studies on progression of CVD.	
Multiple	Include: More than 1 article per dataset.	
Publications of	Exclude: No restriction.	
Same Data		

Appendix E: Rationale for Exclusion at Abstract or Full-Text Triage for Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

Citation	Outcome	Population	Study	Fundamente	Not ideal fit for replacement of	Other
			Design	Exposure	de novo search	
Albright C, Thompson DL. The effectiveness of						
walking in preventing cardiovascular disease in						
women: a review of the current literature. J				Х		
Womens Health (Larchmt). 2006;15(3):271-						
280. doi:10.1089/jwh.2006.15.271.						
Azuma K, Matsumoto H. Potential universal						
application of high-intensity interval training						
from athletes and sports lovers to patients.			Х	х		
Keio J Med. 2017;66(2):19-24.						
doi:10.2302/kjm.2016-0006-IR.						
Bacon AP, Carter RE, Ogle EA, Joyner MJ.						
vO_2 max trainability and high intensity interval	v					
training in numans: a meta-analysis. PLOS One.	X					
2013;8(9):e73182.						
Baker C. Gray SP. Wright A. et al. The effect of						
a nedemator based community walking						
intervention "Walking for Wellbeing in the						
West" on physical activity levels and health			v			
outcomes: a 12-week randomized controlled			^			
trial Int I Behav Nutr Phys Act Sent 2008:44						
doi:10.1186/1479-5868-5-44						
Barr-Anderson DJ. AuYoung M. Whitt-Glover						
MC. Glenn BA. Yancev AK. Integration of short						
bouts of physical activity into organizational						
routine: a systematic review of the literature.				х		
Am J Prev Med. 2011;40(1):76-93.						
doi:10.1016/j.amepre.2010.09.033.						
Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS,						
Fenning AS. Effects of high-intensity interval						
training on cardiometabolic health: a						
systematic review and meta-analysis of				х		
intervention studies. Br J Sports Med.						
2017;51(6):494-503. doi:10.1136/bjsports-						
2015-095841.						
Bohannon RW. Number of pedometer-						
assessed steps taken per day by adults: a						
descriptive meta-analysis. Phys Ther.	х			Х		
2007;87(12):1642-1650.						
doi:10.2522/ptj.20060037.						
Bravata DM, Smith-Spangler C, Sundaram V, et						
al. Using pedometers to increase physical						
activity and improve health: a systematic				Х		
review. JAMA. 2007;298(19):2296-2304.						
doi:10.1001/jama.298.19.2296.						
Buchneit M, Laursen PB. High-intensity						
nuterval training, solutions to the programming			х			
puzzle. Part II: allaerobic energy,						
neuromuscular load and practical applications.			1		1	1

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
<i>Sports Med.</i> 2013;43(10):927-954. doi:10.1007/s40279-013-0066-5.						
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. <i>Sports Med</i> . 2013;43(5):313-338. doi:10.1007/s40279-013-0029-x.			х			
Cassidy S, Thoma C, Houghton D, Trenell MI. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health. <i>Diabetologia</i> . 2017;60(1):7-23. doi:10.1007/s00125-016-4106-1.			х			
Choi BC, Pak AW, Choi JC, Choi EC. Daily step goal of 10,000 steps: a literature review. <i>Clin</i> <i>Invest Med.</i> 2007;30(3):E146-E151.			х			
Eliakim A, Nemet D. Interval training and the GH-IGF-I axis—a new look into an old training regimen. <i>J Pediatr Endocrinol Metab</i> . 2012;25(9-10):815-821. doi:10.1515/jpem- 2012-0209.			х			
Fleg JL. Salutary effects of high-intensity interval training in persons with elevated cardiovascular risk. <i>F1000 Research</i> . Sept 2016:F1000 Faculty Rev-2254. doi:10.12688/f1000research.8778.1.			х			
Freese EC, Gist NH, Cureton KJ. Effect of prior exercise on postprandial lipemia: an updated quantitative review. <i>J Appl Physiol (1985)</i> . 2014;116(1):67-75. doi:10.1152/japplphysiol.00623.2013.				х		
Garcia-Hermoso A, Cerrillo-Urbina AJ, Herrera- Valenzuela T, Cristi-Montero C, Saavedra JM, Martínez-Vizcaíno V. Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. <i>Obes Rev.</i> 2016;17(6):531-540. doi:10.1111/obr.12395.		х				
Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high- intensity interval training in health and disease. <i>J Physiol</i> . 2012;590(5):1077-1084. doi:10.1113/jphysiol.2011.224725.			х			
Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint interval training effects on aerobic capacity: a systematic review and meta- analysis. <i>Sports Med</i> . 2014;44(2):269-279. doi:10.1007/s40279-013-0115-0.	Х					
Hoffmann JJ Jr, Reed JP, Leiting K, Chiang CY, Stone MH. Repeated sprints, high-intensity interval training, small-sided games: theory and application to field sports. <i>Int J Sports</i> <i>Physiol Perform</i> . 2014;9(2):352-357. doi:10.1123/ijspp.2013-0189.		Х	х			

Hussin SR, Macaluso A, Pearson SJ. High- intensity iterval training event diovascular prevention/management of cardiovascular disease. <i>Cardiol Rev.</i> 2016;24(6):273-281. doi:10.1097/CH0.2000000000000124. Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. <i>J.</i> <i>Cardioput Metaboli Irev.</i> 2011;11(6):378-385. doi:10.1097/HCR.2001245. Height metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. <i>J.</i> <i>Cardioput Metaboli Irev.</i> 2011;11(6):378-385. doi:10.1097/HCR.2001245. Height metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. <i>J.</i> <i>Karsen T, Ameral III.</i> Justice Factors in the set of people with cardiometabolic risk factors in people disores regulation and insulin resistance: a glucose regulation and insulin resistance: a subta-analysis. <i>Des Rev.</i> 2015;16(11):942-961. doi:10.1111/br.12317. Kang M, Marshall SJ, Barreira TV, Leu JO. Effect of pedometer-based physical activity interventions: a meta-analysis. <i>Res G Exerc</i> <i>X Sout.</i> 2009;80(3):648-655. doi:10.1080/CU3167.2003.010599604. Karlsen T, Aamot L, Haykowsky M, Rogmo Ø. High intensity interval training for maximizing health outcomes. <i>Prog Cardiovosc Dis.</i> 2017;40(1):697-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sison SB, Short KR. The potential for high-intensity interval training for maximizing health outcomes. <i>Prog Cardiovosc Dis.</i> 2012;42(6):4263-50. doi:10.1107/20031216622753. doi:10.1177/2003121166822753. doi:10.1177/2003121166822753. Metabolic faces a systematic review. <i>X K</i> <i>SIGE Open Med.</i> Dec 2012;126(5079916682568. Milanovic J, Sports M. Effectivenes of high-intensity interval training and the role of exercise intensity. <i>J Physiolo</i> 2012;59:59:29:29:5. <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i>	Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
intensity cinturous training in the prevention/management of cardiovascular disease. Cardiol Rev. 2016;24(6):273-281. doi:10.1097/CRD.00000000000124. Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disodrers: a meta-analysis. J Cardioquim Rehobil Prev. 2011;31(6):378-385. doi:10.1097/RCB0D012912251fach. Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. J Kang Marshall Si, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport. 2009;80(3):648-655. doi:10.1016/f.PCAT.2137. Kang M, Marshall Si, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport. 2009;80(3):648-655. doi:10.10163/02701367.2009.10599604. Karisen T, Aamot L, Haykowsky M, Rogmø Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kolmos M, Krowyk RS, Kruuse C. Effect of high-intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):648-505. X Kolmos M, Krowyk RS, Kruuse C. Effect of high-intensity interval training for reduce cardiometabolic disaser isk. Sports Med. 2012;42(2):483-509. doi:10.2165/11530510- 00000000-00000. K Adardins MM, Gibala MJ. Physiological adaptations to interval Training and the role of exercise intensity. J Physiological adaptations to interval Training and the role of exercise intensity. J Physiological adaptations to interval Training and the role of exercise intensity. J Physiological adaptations to interval Training and the role of exercise intensity. J Physiological adaptations to interval Training and the role of exercise intensity. J Physiological adaptations to interval Training and the role of exercise intensity. J Physiological adaptations to interval Training and the role of exercise i	Hussain SR, Macaluso A, Pearson SJ. High-						
intensity continuous training in the prevention/management of cardiovascular disease. Cardio Hev. 2016;24(6):273-281. doi:10.1097/CR.000000000000124. Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabit Prev. 2011;31(6):378-385. doi:10.1097/CR.000124.321822116cb. Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on guices regulation and insulin resistance: a meta-analysis. J Cardiopulm Rehabit Prev. 2015;16(11):942-961. doi:10.1111/doi:12317. Kang M, Marshall SJ, Barreina TV, Lee JO. Effect of pedometer-based physical activity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease: a systematic review. XX SAGE Open Med. Dec: 2012;42(6):485-59. doi:10.10380/2015/16511630910- 000000000.0000. Conditional disease: a systematic review. XX SAGE Open Med. Dec: 2012;42(6):485-59. doi:10.11380/271562/2915. XX SAGE Open Med. Dec: 2012;42(6):485-59. doi:10.11380/271562/2915. XX SAGE Open Med. Dec: 2012;42(6):485-81. doi:10.11380/272731662253. Medition in patients with cardiovascular and creative. XX SAGE Open Med. Dec: 2016;20031216682253. Meditions Di Interval Training on endothelial function in patients with cardiovascular and creative. XX SAGE Open Med. Dec: 2016;20031216682253. Meditions Di Interval Training and the role of exercise intensity. J. Physiol. 2017;59(9):2915- 2930. doi:10.1131/JP273196. Meyer J, Morrison J. Zuniga J. The benefits and risks of CrossFit: a systematic review. XX SAGE Open SAGE Open SAGE. SAGE Open SAGE Open SAGE. SA	intensity interval training versus moderate-						
prevention/management of cardiovascular disease. <i>Cardio Nev</i> . 2015;4(1):273-281. doi:10.1097/CR0.000000000000124. Hwang CL, Wu YT, CR0.00000000000124. wetabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev. 2011;31(6):378-385. <i>Cardiopulm Rehabil Prev.</i> 2011;31(6):378-385. <i>X</i> <i>meta-analysis. Obes Rev.</i> 2015;16(11):3942-961. <i>doi:10.1113/hcr.12817.</i> <i>Kang M, Marshall SJ, Barreira TV, Lee JO. Effect</i> <i>of pedometer-based physical activity</i> <i>interventions: a meta-analysis. Res G Exerc.</i> <i>Sport.</i> 2009;80(3):648-655. <i>doi:10.1080/02701367.2009.10599604.</i> <i>Karlsen T, Aamot L, Haykowsky M, Rogmo Ø.</i> High intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Ds.</i> 2017;60(1):67-77. <i>doi:10.1016/j.pcad.2017.03.006.</i> <i>Kasler HS, Sison SB, Sport KR.</i> The potential for high-intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Ds.</i> 2017;60(1):67-77. <i>doi:10.1016/j.pcad.2017.03.006.</i> <i>Kasler HS, Sison SB, Sport KR.</i> The potential for high-intensity interval training to reduce cardiometabolic disease risk. <i>Sports Med</i> 2012;42(6):488-509. doi:10.2165/11630910- 00000000000. <i>Kafe Gorn Med.</i> Dec 2016;2050312116682253. <i>doi:10.1131/P273196.</i> <i>Kale M.</i> <i>Kale M.</i>	intensity continuous training in the			V			
disease. Cardio Rev. 2016;24(6):273-281. doi:10.1097/LFR.00000000000124. Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev. 2011;31(6):378-385. doi:10.1097/LFR.0b013e31822116cb. lelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Des Rev. 2015;16(11):942-961. doi:10.1111/obr.12317. Kang M. Marshall SJ, Barriera TV, Lee JO. Effect of pedometer-based physical activity interventions: meta-analysis. Res Q Exerc Sport. 2009;80(3):648-655. 2017;60(1):67-77. doi:10.1080/02701a67.2009.10599604. Karsten T, Aamot LL, Palycowsky M, Rogmo Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. doi:10.1016/j.pzad.2017.03.06. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disses erks. Sports Med. 200000000. Kolmos M, Krawçk RS, Kruuse C. Effect of high-intensity interval training to reduce cardiometabolic disses erks. Sports Med. 2012;200312116682253. doi:10.1017/200312116682253. doi:10.1013/02031216682568. doi:10.1013/02031216682568. doi:10.1013/02031216682568. doi:10.1013/02031216682568. doi:10.1013/02031216682568. doi:10.1013/02031216682568. doi:10.1013/02031216	prevention/management of cardiovascular			X			
doi:10.1097/CR0.0000000000000124.	disease. Cardiol Rev. 2016;24(6):273-281.						
Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J X Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. <i>Obes Rev.</i> 2015;16(11):942-961. doi:10.1111/br.12317. X Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. <i>Res Q Exerc</i> <i>Sport.</i> 2009;80(3):648-655. doi:10.1080/02701367.2009.10599604. X Karisen T, Aamot IL, Haykowsky M, Rogmo Ø. High intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Dis.</i> 2017;60(1):67-77. doi:10.1016/j.pred.2017.03.006. X Kessler HS, Sisson SB, Short KR. The potential for high-intensity raining to reduce cardiometabolic disease risk. <i>Sports Med.</i> 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. X Kolicound M, Krawçuk RS, Kruuse C. Effect of high-intensity raining on torduce cardiometabolic disease risk. <i>Sports Med.</i> 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. X Kolicound J, Sibaal M, Physiological adaptations to interval training and the role of exercise intensity. <i>J Physiol.</i> 2017;555(9):2915- 2330. doi:10.1131/PZ73166. X MacInnis MJ, Gibala ML, Physiological adaptations to interval training (art mole of exercise intensity. <i>J Physiol.</i> 2017;555(9):2915- 2330. doi:10.1131/PZ73166. X Malernis MJ, Gibala ML, Physiological adaptations to interval training (HT) and continuous dentify of W2Damax improvements: a systematic review. XX 2017;2165079916685568. X Milanovic Z, Sports G	doi:10.1097/CRD.000000000000124.						
Interval training on service capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev. 2011;31(6):378-385. doi:10.1037/HCR.0b013e132216cb. Library and training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942-961. doi:10.1111/HCR.0b013e132216cb. Library and training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942-961. doi:10.1111/HCR.0b013e1327. Library and training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942-961. doi:10.1111/UC201367.2009.10599604. Karisen T, Aamot IL, Haykowsky M, Rogmno Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. doi:10.1016/UC201367.2009.10599604. Karisen T, Aamot IL, Haykowsky M, Rogmno Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. doi:10.2105/511630910-00000000-00000. Kolmos M, Krawçuk RS, Sports Med. 2012;42(6):489-590. doi:10.2165/11530910-000000000-00000. Kolmos M, Krawçuk RS, Kruuse C. Effect of high-intensity interval training and therole of exercise intensity. Physiol. 2017;59(5)(2915-2915-2915-2915-2915-2915-2915-2915-	Hwang CL. Wu YT. Chou CH. Effect of aerobic						
metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopuim Rehabil Prev. 2011;31(6):378-385. doi:10.1097/HCR.0b013e31822f16cb. Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. <i>Obes Rev.</i> 2015;16(11):92-961. doi:10.1111/obr.12317. Kang M, Marshall SJ, Barreira TV, Lee JD. Effect of pedometer-based physical activity interventions: a meta-analysis. <i>Res Q Exerc</i> Sport. 2009;80(3):648-655. doi:10.1080/02701367.2009.10599604. Karlsen T, Amort LI, Haykowsky M, Rogmo Ø. High intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Dis.</i> 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sison SB, Short KR. The potential for high-intensity interval training for educe cardiometabolic disease risk. Sports Med. 2012;42(6):489-509. doi:10.2105/11630910- 00000000-00000. Kolmos M, Krawcyk RK, Ruuse C. Effect of high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489-509. doi:10.2105/511630910- 000000000-0000. Kolmos M, Krawcyk RK, Ruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. <i>X A</i> <i>SAGE Open Med.</i> Dec 2015:20053116682253. Machinis MJ, Gibala MJ. Physiol.2017;599(5):215- 2393. doi:10.1131/PP27196. Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. <i>X X</i> <i>SAGE Open Med.</i> Dec 2015:20531216682558. Milanovic Z, Sports G, Weston M. Effectiveness of high-intensity interval training for VO2max improvements: a systematic review. <i>X X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i>X</i> <i></i>	interval training on exercise capacity and						
Cardiometabolic disorders: a meta-analysis. J X Cardioquim Rehabil Prev. 2011;31(6):378-385. X Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942-961. X Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport. 2009;80(3):648-655. X Sport. 2009;80(3):648-655. X Sultrosci T, Aamot IL, Haykowsky M, Rogmo Ø. X High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;90(1):67-77. X doi:10.10016/j.pcad.2017.03.006. X Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. X 2012;42(6):448-509. doi:10.2165/11630910- 000000000-00000. X Xolmos M, Krawyck RS, Kruuse C. Effect of high-intensity training and netole of exercise intensity. JPhysiol. 2017;95(9):2915- 2930. doi:10.113/JPE271668 X MacIninis MJ, Gibala MJ. Physiological adaptations to Interval Training and the role of exercise intensity. JPhysiol. 2017;95(9):2915- 2930. doi:10.113/JPE271956. X Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HT) and continuous dentihis for VO2max improvements: a systematic review. X Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HT) and continuous dentihis for VO2max improvements: a systematic review an	metabolic risk factors in people with						
Cardiopulm Rehabil Prev. 2011;31(6):378-385. doi:10.1097/HCR.0b013e31822/16cb. Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. <i>Obes Rev.</i> 2015;16(11):942-961. doi:10.1111/obr.12317. Kang M, Marshall SJ, Barreia TV, Lee JO. Effect of pedometer-based physical activity interventions: meta-analysis. <i>Res Q Exerc</i> Sport. 2009;80(3):648-655. doi:10.1080/02701367.2009.10599604. Karlsen T, Amor LI, Haykowsky M, Rogmon Ø. High intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Dis.</i> 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS; Sison SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. <i>Sports Med.</i> 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity interval training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. <i>X SAGE Open Med.</i> 2012;42(6):489-502. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. <i>J Physiol.</i> 2016;20531116682253. doi:10.1177/205911216682253. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training (HT) and contunuous endurance training (HT) and continuous endurance training (HT) and conti	cardiometabolic disorders: a meta-analysis. /		Х				
doi:10.1097/HCR.0b013e31822f16cb. Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942-961. doi:10.1111/obr.12317. Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport. 2009;80(3):648-655. doi:10.1080/02701367.2009.10599604. Karisen T, Aamot IL, Haykowsky M, Rogmon Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. X 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;242(6):489-509. doi:10.2165/11630910- 00000000-00000. Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. XGGC Open Med. Dec 2016:2050312116682253. Matchnis ML, Gibla ML. Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training and the role of exercise intensity. J Physiological adaptations to interval training (HT) and on the continuous endurance training (HT) p	Cardionulm Rehabil Prev. 2011:31(6):378-385						
Jelleyman C, Yates T, O'Donovan G, et al. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. 2015;16(11):942-961. X Kang M, Marshall SJ, Barreia TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport. 2009;80(3):648-655. X Sport. 2009;80(3):648-655. X Goi:10.1080/02/201367.2009.10599604. X Karlsen T, Anmot LI, Haykowsky M, Rogmon Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. X Goi:10.1016/j.pcad.2017.03.006. X Kessler HS, Sison SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. X 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. X 000000000-00000. X Kolfe Den Med. Dec 2016:2050312116682253. X doi:10.1117/2050312116682253. X MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;59(5)(9):2915- 2930. doi:10.1113/IP273196. X Meeric J, Morrison J, Zuniga J. The benefits and risks of CrossFit. a systematic review. Workplace Health Sof. March 2017;24507916685568. X Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HT) and continuous endurance training for VO2max improvements: a systematic review. Workplace Heal	doi:10.1097/HCR.0b013e31822f16cb						
Arte, muster, interval training on glucose regulation and insulin resistance: a X meta-analysis. <i>Obers Rev.</i> 2015;16(11):942-961. X doi:10.1111/obr.13217. X Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. <i>Res Q Exerc</i> Sport. 2008;90(3):648-655. X doi:10.1080/02701367.2009.10599604. X Karlsen T, Aamot IL, Haykowsky M, Rogmo Ø. X High intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Dis</i> . X 2017;60(1):67-77. X doi:10.106/j.pcad.2017.03.006. X Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. <i>Sports Med</i> . X 2012;42(6):489-509. doi:10.2165/11630910- 00000000-000000. X 000000000-000000. X Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. X SAGE Open Med. Dec 2016;2050312116682253. X Mactrinis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. <i>Physiol.</i> 2017;95(9):2915- 2930. doi:10.1113/IP273196. X Milanovič Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HTT) and continuous endurance training (HT) an	lelleyman C Vates T O'Donovan G et al. The						
Elector ing in Testistance: a meta-analysis. <i>Obes Rev.</i> 2015;16(11):942-961. X X X A S A S A S A S A S A S A S A S A	effects of high-intensity interval training on						
puctore regulation fusion for a strain of the set of th	glucose regulation and insulin resistance: a				v		
Interventions a meta-analysis. New 2013, 1011, 942-901. Kang M, Marshall SJ, Barreira TV, Lee JO. Effect of pedometer-based physical activity interventions: a meta-analysis. <i>Res Q Exerc</i> <i>Sport.</i> 2009;80(3):648-655. doi:10.1080/02701367-2009.10599604. Karlsen T, Aamot IL, Haykowsky M, Rognmo Ø. High intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Dis.</i> 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. <i>Sports Med.</i> 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. <i>SAGE Open Med.</i> Dec 2016;2050312116682253. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. <i>J Physiol.</i> 2017;595(9):2915- 2930. doi:10.1113/JP73196. Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit. a systematic review. <i>X</i> <i>Suff Copen Med.</i> 2017;2165079916685568. doi:216507991668556	moto analysis. Obec Rey, 2015;16(11):042.061				^		
1001101111/00111103011 Image: Construct of pedometer-based physical activity Interventions: a meta-analysis. Res Q Exerc X Sport. 2009;80(3):648-655. X doi:10.1080/02701367.2009.10599604. X Karlsen T, Aamot IL, Haykowsky M, Rognmo Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. X 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sisson SB, Short RR. The poential X for high-intensity interval training to reduce X cardiometabolic disease risk. Sports Med. X 2012;42(6):489-509. doi:10.2165/11630910- X 000000000-000000. X Kolmos M, Krawcyk RS, Kruuse C. Effect of X high-intensity training to reduce X carebrovascular disease: a systematic review. X SAGE Open Med. Dec X 2016:2050312116682253. X Machnis M, Gibala MJ. Physiological X adaptations to interval training and the role of X exercise intensity. J Physiol. 2017;555(9):2915- X 2030. doi:10.1113/JP273196. X MacInnis MJ, Gibala MJ. Physiological Adaptations	doi:10.1111/obr 12217						
Naling with Wassing Statistical activity x interventions: a meta-analysis. Res Q Exerc X Sport. 2009;80(3):648-655. X doi:10.1080/02701367.2009.10599604. X Karisen T, Aamot IL, Haykowsky M, Rogmmo Ø. X High intensity interval training for maximizing X bealth outcomes. Prog Cardiovasc Dis. X 2017./60(1):67-77. X doi:10.1016/j.pcad.2017.03.006. X Kessler HS, Sison SB, Short KR. The potential X for high-intensity interval training to reduce X cardiometabolic disease risk. Sports Med. X 00000000-00000. X 00000000-00000. X Kolf System KS, Kruuse C. Effect of X high-intensity training on endothelial function X in patients with cardiovascular and X cerebrovascular disease: a systematic review. X SAGE Open Med. Dec X 2016:2050312116682253. X Machinis MU, Giabla ML. Physiological X adaptations to interval training and the role of X exercles of thish-intensity. J Physiol. 2017;255(9):2915- X	Kang M. Marchall SI. Parroira TV Log IO. Effect						
Dip Deconficter-Josed physical analysis. Res Q Exerc X Sport. 2009;80(3):648-655. X doi:10.1080/02701367.2009;010599604. X Karlsen T, Aamot IL, Haykowsky M, Rogmo Ø. X High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. X 2017;60(1):67-77. X doi:10.1016/j.pcad.2017.03.006. X Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. X 2012;42(6):489-509. doi:10.2165/11630910- X 000000000-00000. X Kolmos M, Krawçek RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. X SAGE Open Med. Dec X X 2016:2050312116682253. X X MacInnis MJ, Gibala MJ, Physiol.2017;255(9):2915- X X 2930. doi:10.113/PZ73196. X X X Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. X X X Morkinck G, Sporis G, Weston M. Effectiveness of high-intensity interval training (HT) and continuous endurance training for VO2max improvements: a systematic review and meta- X analysis of controlled trials. Sp	of nodemater based abusical activity						
Interventuolis a interventarysis. Nes of Zetric port. 2009;803):648-655. doi:10.1080/02701367.2009.10599604. Karlsen T, Aamot IL, Haykowsky M, Rogmo Ø, High intensity interval training for maximizing health outcomes. <i>Prog Cardiovasc Dis.</i> 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. <i>Sports Med.</i> 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. SAGE Open Med. Dec 2016:2050312116682253. doi:10.1177/2050312116682253. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. <i>J Physiol.</i> 2017;595(9):2915- 2930. doi:10.1131/P/273196. Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. X 2017:2165079916685568. doi:2165079916685568. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HT) and continuous endurance training for V02max improvements: a systematic review and meta- analysis of controlled traits. <i>Sports Med.</i> 2015:2015:2011:20150144. doi:10.1010/07/s40279- Discometabolic disease in a systematic review and meta- analysis of controlled trains. <i>Sports Med.</i> 2015:2015:2000 Discometabolic disease in the role of adaptations of interval training (HT) and continuous endurance training for V02max improvements: a systematic review and meta- Analysis of controlled trains. <i>Sports Med.</i> 2015;24(50):1469-1481. doi:10.1007/s40279- Discometabolic disease in the role of the soft and review and meta- Analysis of controlled trains. <i>Sports Med.</i> 2015;24(50):1469-1481. doi:10.1007/s40279- Discometabolic discometabolic discomet	interventions: a moto analysic Res O Evers				v		
Juli 1, 2005,0(2)201367, 2009,10599604.	Sport 2000-80(2):648 655				^		
L01:10.1080/02/01867.2009.10395004. X Karlsen T, Amot L, Haykowsky M, Rogmo Ø. X High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. X 2017;60(1):67-77. X doi:10.1016/j.pcad.2017.03.006. X Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. X 2012;242(6):489-509. doi:10.2165/11630910-00000000-00000. X 000000000-00000. Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. X SAGE Open Med. Dec 2016:10.117/2050312116682253.	<i>sport</i> , 2009;80(3):048-055.						
Adition 1, Adition 1, Paykowsky W, Rogimito 9.High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis.X2017;60(1):67-77.Xdoi:10.1016/j.pcad.2017.03.006.XKessler HS, Sisson SB, Short RR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med.X2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000.XKolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review.XSAGE Open Med. Dec 2016:2050312116682253.XMachinis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017;595(9):2915-X2930. doi:10.1113/JP273196.XMeyer J, Morrison J, Zuniga J. The benefits and risks of CrosPit: a systematic review.XWorkplace Health Saf. March uotizle5579916685568.Xdoi:10.113/JP273196.XMilanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trails. Sports Med.X2015;235:0Adoi:10:1146/19404279-1141. doi:10.1007/s40279-A	401:10:1080/02/01367.2009.10599604.						
Ingin intensity interval training ion inaxinizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006.XKessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489-509. doi:10.2165/11630910- 000000000000000000000000000000000000	Karisen I, Admot IL, Haykowsky W, Roghino Ø.						
Inelant outcomes. Prog Cardinovas Lis. 2017;60(1):67-77. doi:10.1016/j.pcad.2017.03.006. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. SAGE Open Med. Dec 2016:2050312116682253. doi:10.1117/2050312116682253. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196. Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Sof. March 2017:2165079916685568. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (hIT) and continuous endurance training (h	High Intensity Interval training for maximizing			v			
2017,00(1):07-77.				X			
Id01:01106/j.plcdu2017/05.006. X Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. X 2012;42(6):489-509. doi:10.2165/11630910- 00000000-00000. X Nolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review. X SAGE Open Med. Dec X 2016:2050312116682253. X doi:10.1177/2050312116682253. X MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. <i>J Physiol.</i> 2017;595(9):2915- 2930. doi:10.1113/JP273196. X Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. X Workplace Health Sof. March 2017:2165079916685568. X doi:2165079916685568. X doi:2165079916685568. X doi:2165079916685568. X doi:2165079916685568. X doi:2165079916685568. X Malnovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. X 2015:2055.0 X X	2017;00(1):07-77.						
Nesser PS, Sison Sb, Short KK. The potentialfor high-intensity interval training to reduce cardiometabolic disease risk. Sports Med.2012;42(6):489-509. doi:10.2165/11630910- 0000000-00000.Kolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review.XSAGE Open Med. Dec 2016:2050312116682253.MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intersity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JPZ3196.Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review.Workplace Health Saf. March continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med.Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training fulfT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med.2015;2055-0V15:0355-0	doi:10.1016/j.pcau.2017.03.006.						
Iter intensity interval training to Feducecardiometabolic disease risk. Sports Med.2012;242(6):489-509. doi:10.2165/11630910-00000000-00000.Kolmos M, Krawçk RS, Kruuse C. Effect ofhigh-intensity training on endothelial functionin patients with cardiovascular andcerebrovascular disease: a systematic review.SAGE Open Med. Dec2016:2050312116682253.doi:10.1177/2050312116682253.MacInnis MJ, Gibala MJ. Physiologicaladaptations to interval training and the role ofexercise intensity. J Physiol. 2017;595(9):2915-2930. doi:10.1113/JP273196.Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review.Workplace Health Saf. MarchX2017:2165079916685568.doi:2165079916685568.doi:2165079916685568.Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med.2015;245(10):1469-1481. doi:10.1007/s40279-115:0365.0	Kessier HS, Sisson SB, Short KR. The potential						
Cardiometabolic disease risk. Sports Med.X2012;42(6):489-509. doi:10.2165/11630910- 0000000000	for high-intensity interval training to reduce				v		
2012;42(6):439-509. doi:10.2165/11630910- 00000000-00000. Image: Construct of the second	cardiometabolic disease risk. Sports Med.				X		
CorrectionCorrectionCorrectionKolmos M, Krawcyk RS, Kruuse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review.XSAGE Open Med. Dec 2016:2050312116682253.XMacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.XMeyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review.XWorkplace Health Saf. March doi:12165079916685568.XMilanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med.X2015;45(10):1469-1481. doi:10.1007/s40279- U15-0365-0Image: Controlled trials. Sports Med.X	2012;42(6):489-509. 001:10.2165/11630910-						
Kolmos M, Krawcyk RS, Krubse C. Effect of high-intensity training on endothelial function in patients with cardiovascular and cerebrovascular disease: a systematic review.XSAGE Open Med. Dec 2016:2050312116682253.XMacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.XMeyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review.XWorkplace Health Saf. March doi:12.165079916685568.XMilanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-01365-0A	Kalmaa M. Krausala DS. Krausa C. Effect of						
Inigri-Intensity training on Proorhelia function in patients with cardiovascular and cerebrovascular disease: a systematic review. SAGE Open Med. Dec 2016:2050312116682253. doi:10.1177/2050312116682253. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196. Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. March 2017:2165079916685568. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	Kolmos IVI, Krawcyk RS, Kruuse C. Effect of						
In patients with CardioVascular and cerebrovascular disease: a systematic review. SAGE Open Med. Dec 2016:2050312116682253. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196. Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. March 2017:2165079916685568. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	high-intensity training on endothenal function						
Carlo Dovascular disease: a systematic review.XSAGE Open Med. Dec 2016:2050312116682253.Image: Construct of the systematic review.MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.XMeyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review.XWorkplace Health Saf. March 001:2165079916685568.XMilanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0X	In patients with cardiovascular and		v				
SAGE Open Med. Dec.2016:2050312116682253.doi:10.1177/2050312116682253.MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. MarchWorkplace Health Saf. MarchX2017:2165079916685568.doi:2165079916685568.Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	Cerebrovascular disease: a systematic review.		~				
2016.2030312110682253.MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. MarchWorkplace Health Saf. MarchX2017:2165079916685568. doi:2165079916685568.Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0							
InterventionInterventionInterventionMacInitionMacInitionMacInitionMacInitionMacInitionadaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.XXMeyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. MarchXInterventionWorkplace Health Saf. MarchXInterventionIntervention2017:2165079916685568. doi:2165079916685568.InterventionInterventionMilanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0X	2010.2030312110062235.						
Machinis MJ, Gibara MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.XMeyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. March 2017:2165079916685568.XMilanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0X	Maclanic ML Cibala ML Divisiological						
adaptations to interval training and the fole of exercise intensity. J Physiol. 2017;595(9):2915- 2930. doi:10.1113/JP273196.XMeyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review. Workplace Health Saf. March 2017:2165079916685568.XMilanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0X	adaptations to interval training and the role of						
2930. doi:10.1113/JP273196.	adaptations to interval training and the fole of			Х			
2530. doi:101113/JF273130.21312Meyer J, Morrison J, Zuniga J. The benefits and risks of CrossFit: a systematic review.XWorkplace Health Saf. MarchX2017:2165079916685568.4doi:2165079916685568.4Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0X	2020 doi:10.1112/10272106						
risks of CrossFit: a systematic review. Workplace Health Saf. March X 2017:2165079916685568. doi:2165079916685568. Milanovic Z, Sporis G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. Sports Med. 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	Mover Morrison Zuniga The bonofits and						
Workplace Health Saf. March X 2017:2165079916685568. X doi:2165079916685568. Image: Control of the second seco	risks of CrossEit: a systematic roviow						
workplace Health 30). March X 2017:2165079916685568.	Morkelace Health Saf March	v					
doi:2165079916685568. Image: Constraint of the second	2017-2165070016685569	^					
Milanovic Z, Sporis G, Weston M. Effectiveness Image: Continuous of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. X 2015;45(10):1469-1481. doi:10.1007/s40279-015-0365-0 Image: Content of the systematic review and meta-analysis of controlled trials. Sports Med. Image: Content of the systematic review and meta-analysis of controlled trials. Sports Med.	2017.2105079910065506. doi:2165070016695569						
of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. <i>Sports Med</i> . 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	Milanovic 7 Sporis G. Woston M. Effectiveness						
continuous endurance training for VO2max improvements: a systematic review and meta- analysis of controlled trials. <i>Sports Med</i> . 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	of high-intensity interval training (HIT) and						
improvements: a systematic review and meta- analysis of controlled trials. <i>Sports Med</i> . 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	continuous endurance training for VO2may						
analysis of controlled trials. <i>Sports Med</i> . 2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	improvements: a systematic review and mate	v					
2015;45(10):1469-1481. doi:10.1007/s40279- 015-0365-0	analysis of controlled trials Sports Med	^					
015-0365-0	2015.45(10).1469-1481 doi:10.1007/c/0270-						
	015-0365-0.						

Exposure Subcommittee: Q4. What is the relationship between step count per day and (1) all-cause and cardiovascular disease mortality and (2) incidence for cardiovascular disease events and risk of type 2 diabetes?

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of de novo search	Other
Murtagh EM, Murphy MH, Boone-Heinonen J.						
Walking: the first steps in cardiovascular						
disease prevention. Curr Opin Cardiol.			Х	х		
2010;25(5):490-496.						
doi:10.1097/HCO.0b013e32833ce972.						
Oliveros MJ, Gaete-Mahn MC, Lanas F,						
Martinez-Zapata MJ, Seron P. Interval training						
exercise for hypertension. <i>Cochrane Database</i>			Х			
Syst Rev. Jan 2017:CD012511.						
doi:10.1002/14651858.CD012511.						
Ramos JS, Dalleck LC, Tjonna AE, Beetham KS,						
Coombes JS. The impact of high-intensity						
interval training versus moderate-intensity						
continuous training on vascular function: a		х				
systematic review and meta-analysis. Sports						
Med. 2015;45(5):679-692.						
doi:10.1007/s40279-015-0321-z.						
Regnaux JP, Lefevre-Colau MM, Trinquart L, et						
al. High-intensity versus low-intensity physical						
activity or exercise in people with hip or knee		v				
osteoarthritis. Cochrane Database Syst Rev.		~				
2015;(10):CD010203.						
doi:10.1002/14651858.CD010203.						
Shiraev T, Barclay G. Evidence based						
exercise— clinical benefits of high intensity		x	x			
interval training. Aust Fam Physician.		X	~			
2012;41(12):960-962.						
Sloth M, Sloth D, Overgaard K, Dalgas U.						
Effects of sprint interval training on VO2max						
and aerobic exercise performance: a					х	
systematic review and meta-analysis. Scand J						
Med Sci Sports. 2013;23(6):e341-e352.						
doi:10.1111/sms.12092.						
Soares FH, de Sousa MB. Different types of						
physical activity on inflammatory biomarkers						
in women with or without metabolic	х					
disorders: a systematic review. Women						
Health. 2013;53(3):298-316.						
001:10.1080/03630242.2013.782940.						
TUGOT-LOCKE C, BASSETT DK Jr. HOW MANY						
steps/day are enough? Preliminary pedometer			Х			
ZUU4,54(1).1-0. Tudor Locko C. Craig CL. Acuaci V. at al. Usur						
many steps (day are oncursh? For older adults						
and special populations Int I Pehry Nutr Drug				v		
Act 10 2011:80 doi:10 1186/1/70-5869 9				^		
80						
Tudor-Locke C Craig CL Reets MW et al How						
many steps/day are enough? For children and						
adolescents. Int J Behav Nutr Phys Act. July		х		Х		
2011:78. doi:10.1186/1479-5868-8-78						
Tudor-Locke C Craig CL Brown WL et al How						
many steps/day are enough? For adults. Int J				Х	Х	

Citation	Outcome	Population	Study Design	Exposure	Not ideal fit for replacement of	Other
Behav Nutr Phys Act. July 2011:79.					de novo search	
doi:10.1186/1479-5868-8-79.						
Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. <i>Appl Physiol Nutr Metab</i> . 2013;38(2):100-114. doi:10.1139/apnm-2012- 0235.				х	Х	
Tudor-Locke C, Hart TL, Washington TL. Expected values for pedometer-determined physical activity in older populations. <i>Int J Behav Nutr Phys Act</i> . Aug 2009:59. doi:10.1186/1479-5868-6-59.	х					
Vollaard NB, Metcalfe RS, Williams S. Effect of number of sprints in a SIT session on change in VO2max: a meta-analysis. <i>Med Sci Sports</i> <i>Exerc</i> . 2017;49(6):1147-1156. doi:10.1249/MSS.00000000001204.	х					
Weston KS, Wisloff U, Coombes JS. High- intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. <i>Br J</i> <i>Sports Med.</i> 2014;48(16):1227-1234. doi:10.1136/bjsports-2013-092576.		х				
Weston M, Taylor KL, Batterham AM, Hopkins WG. Effects of low-volume high-intensity interval training (HIT) on fitness in adults: a meta-analysis of controlled and non-controlled trials. <i>Sports Med</i> . 2014;44(7):1005-1017. doi:10.1007/s40279-014-0180-z.	x			Х		
Wewege M, van den Berg R, Ward RE, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. <i>Obes Rev.</i> 2017;18(6):635-646. doi:10.1111/obr.12532.		х		х		
Wisloff U, Ellingsen O, Kemi OJ. High-intensity interval training to maximize cardiac benefits of exercise training? <i>Exerc Sport Sci Rev</i> . 2009;37(3):139-146. doi:10.1097/JES.0b013e3181aa65fc.			х	х		

Rationale for Exclusion at Abstract or Full-Text Triage for Original Research

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

Citation	Outcome	Population	Study Design	Exposure	Other
Anjana RM, Sudha V, Lakshmipriya N, et al. Physical activity patterns and gestational diabetes outcomes—the wings project. <i>Diabetes Res Clin</i> <i>Pract</i> . June 2016;116:253- 262.doi:10.1016/j.diabres.2016.04.041		х			
Arjunan SP, Deighton K, Bishop NC, et al. The effect of prior walking on coronary heart disease risk markers in South Asian and European men. <i>Eur J</i> <i>Appl Physiol</i> . 2015;115(12):2641-2651. doi:10.1007/s00421-015-3269-7.				Х	
Braun LM, Rodriguez DA, Song Y, et al. Changes in walking, body mass index, and cardiometabolic risk factors following residential relocation: longitudinal results from the CARDIA study. <i>J Transp Health</i> . 2016;3(4):426-439. doi:10.1016/j.jth.2016.08.006.				Х	
Butner KL, Creamer KW, Nickols-Richardson SM, Clark SF, Ramp WK, Herbert WG. Fat and muscle indices assessed by pQCT: relationships with physical activity and type 2 diabetes risk. <i>J Clin Densitom</i> . 2012;15(3):355-361. doi:10.1016/j.jocd.2012.01.012.	Х				
Camhi SM, Sisson SB, Johnson WD, Katzmarzyk PT, Tudor-Locke C. Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health. <i>Prev Med.</i> 2011;52(5):358-360. doi:10.1016/j.ypmed.2011.01.030.			х		
Cocate PG, de Oliveira A, Hermsdorff HH, et al. Benefits and relationship of steps walked per day to cardiometabolic risk factor in Brazilian middle-aged men. <i>J Sci Med Sport</i> . 2014;17(3):283-287. doi:10.1016/j.jsams.2013.04.017.				х	
Davenport MH, Giroux I, Sopper MM, Mottola MF. Postpartum exercise regardless of intensity improves chronic disease risk factors. <i>Med Sci Sports Exerc</i> . 2011;43(6):951-958. doi:10.1249/MSS.0b013e3182051155.	х				
DiPietro L, Gribok A, Stevens MS, Hamm LF, Rumpler W. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. <i>Diabetes Care</i> . 2013;36(10):3262-3268. doi:10.2337/dc13-0084.	х			х	
Faria CD, Paula de Carvalho-Pinto B, Nadeau S, Fuscaldi Teixeira-Salmela L. 180 degrees turn while walking: characterization and comparisons between subjects with and without stroke. <i>J Phys Ther Sci</i> . 2016;28(10):2694-2699. doi:10.1589/jpts.28.2694.				х	
Freak-Poli R, Wolfe R, Brand M, de Courten M, Peeters A. Eight-month postprogram completion: change in risk factors for chronic disease amongst participants in a 4-month pedometer-based workplace health program. <i>Obesity (Silver Spring)</i> . 2013;21(9):E360-E368. doi:10.1002/oby.20342.	х				

Citation	Outcome	Population	Study Design	Exposure	Other
Fritz T, Caidahl K, Krook A, et al. Effects of Nordic walking on cardiovascular risk factors in overweight individuals with type 2 diabetes, impaired or normal glucose tolerance. <i>Diabetes Metab Res Rev</i> . 2013;29(1):25-32. doi:10.1002/dmrr.2321.		х			
Fukuoka Y, Gay CL, Joiner KL, Vittinghoff E. A novel diabetes prevention intervention using a mobile app: a randomized controlled trial with overweight adults at risk. <i>Am J Prev Med.</i> 2015;49(2):223-237. doi:10.1016/j.amepre.2015.01.003.	х				
Georgiopoulou VV, Kalogeropoulos AP, Chowdhury R, et al. Exercise capacity, heart failure risk, and mortality in older adults: the Health ABC Study. <i>Am J</i> <i>Prev Med.</i> 2017;52(2):144-153. doi:10.1016/j.amepre.2016.08.041.				x	
Girotra S, Kitzman DW, Kop WJ, Stein PK, Gottdiener JS, Mukamal KJ. Heart rate response to a timed walk and cardiovascular outcomes in older adults: the cardiovascular health study. <i>Cardiology</i> . 2012;122(2):69-75. doi:10.1159/00038736.				х	
Henson J, Yates T, Biddle SJ, et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. <i>Diabetologia</i> . 2013;56(5):1012-1020. doi:10.1007/s00125-013-2845-9.				Х	х
Jefferis BJ, Whincup PH, Papacosta O, Wannamethee SG. Protective effect of time spent walking on risk of stroke in older men. <i>Stroke</i> . 2014;45(1):194-199. doi:10.1161/STROKEAHA.113.002246.				х	
Johnsen AM, Alfredsson L, Knutsson A, Westerholm PJ, Fransson EI. Association between occupational physical activity and myocardial infarction: a prospective cohort study. <i>BMJ Open</i> . 2016;6(10):e012692. doi:10.1136/bmjopen-2016- 012692.				х	
Joseph JJ, Echouffo-Tcheugui JB, Golden SH, et al. Physical activity, sedentary behaviors and the incidence of type 2 diabetes mellitus: the Multi- Ethnic Study of Atherosclerosis (MESA). <i>BMJ Open</i> <i>Diabetes Res Care</i> . 2016;4(1):e000185. doi:10.1136/bmjdrc-2015-000185.				х	
Julius BR, Ward BA, Stein JH, McBride PE, Fiore MC, Colbert LH. Ambulatory activity associations with cardiovascular and metabolic risk factors in smokers. <i>J Phys Act Health</i> . 2011;8(7):994-1003.		х			
Kato M, Goto A, Tanaka T, Sasaki S, Igata A, Noda M. Effects of walking on medical cost: a quantitative evaluation by simulation focusing on diabetes. <i>J</i> <i>Diabetes Investig</i> . 2013;4(6):667-672. doi:10.1111/jdi.12114.			х		
Kim C, Draska M, Hess ML, Wilson EJ, Richardson CR. A web-based pedometer programme in women with a recent history of gestational diabetes. <i>Diabet Med</i> . 2012;29(2):278-283. doi:10.1111/j.1464- 5491.2011.03415.x.	x	Х			

Exposure Subcommittee: Q4. What is the relationship between step count per day and (1) all-cause and cardiovascular disease mortality and (2) incidence for cardiovascular disease events and risk of type 2 diabetes?

Citation	Outcome	Population	Study Design	Exposure	Other
Kim J, Tanabe K, Yoshizawa Y, Yokoyama N, Suga Y,					
Kuno S. Lifestyle-based physical activity intervention	N.				
for one year improves metabolic syndrome in	Х				
overweight male employees. <i>Tohoku J Exp Med</i> .					
Z013,ZZ9(1).11-17. Knight E. Stuckov MI. Potrolla PI. Physical activity					
prescription and remote self-monitoring					
technologies: can we reduce cardiovascular disease	x				
risk? Can Diabetes 2013:37(4):548	~				
doi:10.1016/i.icid.2013.08.142.					
Konjak-Griffin D. Brecht ML. Takavanagi S. Villegas J.					
Melendrez M. Physical activity and cardiometabolic					
characteristics in overweight Latina women. J Immigr	х		х		
Minor Health. 2014;16(5):856-864.					
doi:10.1007/s10903-013-9782-z.					
Koolhaas CM, Dhana K, Golubic R, et al. Physical					
activity types and coronary heart disease risk in					
middle-aged and elderly persons: the Rotterdam				Х	
Study. Am J Epidemiol. 2016;183(8):729-738.					
doi:10.1093/aje/kwv244.					
Kraus WE, Califf RM, Tuomilehto J, et al. Relations					
between baseline physical activity by pedometer					
counts and future cardiovascular events in the					Х
navigator study [Abstract A12297]. Circulation.					
2012;126(suppl 21).					
Lejczak A, Josiak K, Węgrzynowska-Teodorczyk K, et					
al. Nordic waiking may safely increase the intensity				v	
patients with chronic heart failure. Adv Clin Exp Med				^	
2016:25(1):145-149 doi:10.17219/acem/35094					
Lu S. Su L. Xiang O. Zhang E. Wu M. Active transport					
and health outcomes: findings from a population					
study in Jiangsu, China. J Environ Public Health.			Х		
2013;2013:624194. doi:10.1155/2013/624194.					
Mayor S. Walking an extra 2000 steps a day reduces					
cardiovascular events in people at high risk of type 2			v		
diabetes. BMJ.			^		
2013;347:f7678.doi:10.1136/bmj.f7678.					
McNeilly AM, McClean C, Murphy M, et al. Exercise					
training and impaired glucose tolerance in obese	х			х	
humans. J Sports Sci. 2012;30(8):725-732.					
doi:10.1080/02640414.2012.6/1952.					
Moe B, Mork PJ, Holtermann A, Nilsen TI.					
Occupational physical activity, metabolic syndrome					
dicease in the HUNT 2 schort study. Ossun Environ				х	
Mad 2012:70(2):86 90 doi:10.1126/compad 2012					
100734.					
Morrell IS. Cook SB. Carey GB. Cardiovascular fitness					
activity, and metabolic syndrome among college					
men and women, <i>Metab Syndr Relat Disord</i> .			Х		
2013;11(5):370-376. doi:10.1089/met.2013.0011.					
Müller-Riemenschneider F, Pereira G, Villanueva K,					
et al. Neighborhood walkability and cardiometabolic			Х	Х	
risk factors in Australian adults: an observational					

Citation	Outcome	Population	Study Design	Exposure	Other
study. <i>BMC Public Health</i> . 2013;13:755. doi:10.1186/1471-2458-13-755.					
Newman AB, Dodson JA, Church T, et al. Cardiovascular events in a physical activity intervention compared with a successful aging intervention: the LIFE Study randomized trial. <i>JAMA</i> <i>Cardiol.</i> 2016;1(5):568-574. doi:10.1001/jamacardio.2016.1324				х	
Pagels P, Raustorp A, Archer T, Lidman U, Alricsson M. Influence of moderate, daily physical activity on body composition and blood lipid profile in Swedish adults. <i>J Phys Act Health</i> . 2012;9(6):867-874.	x				
Philippe M, Gatterer H, Eder EM, et al. The effects of 3 weeks of uphill and downhill walking on blood lipids and glucose metabolism in pre-diabetic men: a pilot study. <i>J Sports Sci Med</i> . 2017;16(1):35-43.	x			x	
Pospieszna B, Karolkiewicz J, Tarnas J, Lewandowski J, Laurentowska M, Pilaczyńska-Szcześniak Ł. Influence of 12-week Nordic Walking training on biomarkers of endothelial function in healthy postmenopausal women. <i>J Sports Med Phys Fitness</i> . 2017;57(9):1178-1185. doi:10.23736/S0022- 4707.16.06528-2.	x				
Preiss D, Thomas LE, Wojdyla DM, et al, on behalf of the NAVIGATOR investigators. Prospective relationships between body weight and physical activity: an observational analysis from the NAVIGATOR study. <i>BMJ Open</i> . 2015;5(8):e007901. doi:10.1136/bmjopen-2015-007901.	х				
Riesco E, Tessier S, Lacaille M, et al. Impact of a moderate-intensity walking program on cardiometabolic risk markers in overweight to obese women: is there any influence of menopause? <i>Menopause</i> . 2013;20(2):185-193. doi:10.1097/gme.0b013e31826f7ebf.				x	
Rossen J, Yngve A, Hagströmer M, et al. Physical activity promotion in the primary care setting in pre- and type 2 diabetes—the Sophia step study, an RCT. <i>BMC Public Health</i> . 2015;15:647. doi:10.1186/s12889-015-1941-9.			х		х
Rowe-Roberts D, Cercos R, Mueller F. Preliminary results from a study of the impact of digital activity trackers on health risk status. <i>Stud Health Technol</i> <i>Inform</i> . 2014;204:143-148.	х				
Rye PL, Reeson ME, Pekrul CM, et al. Comparing health behaviours of internal medicine residents and medical students: an observational study. <i>Clin Invest</i> <i>Med.</i> 2012;35(1):E40-E44.	х				Х
Saevereid HA, Schnohr P, Prescott E. Speed and duration of walking and other leisure time physical activity and the risk of heart failure: a prospective cohort study from the Copenhagen City Heart Study. <i>PLoS One</i> . 2014;9(3):e89909. doi:10.1371/journal.pone.0089909.				х	

Citation	Outcome	Population	Study Design	Exposure	Other
Samawi HM. Daily walking and life expectancy of elderly people in the Iowa 65+ Rural Health Study. <i>Front Public Health</i> . 2013;1:11. doi:10.3389/fpubh.2013.00011.				х	
Sang H, Yao S, Zhang L, et al. Walk-run training improves the anti-inflammation properties of high- density lipoprotein in patients with metabolic syndrome. <i>J Clin Endocrinol Metab</i> . 2015;100(3):870- 879. doi:10.1210/jc.2014-2979.	х				
Schulz AJ, Israel BA, Mentz GB, et al. Effectiveness of a walking group intervention to promote physical activity and cardiovascular health in predominantly non-Hispanic black and Hispanic urban neighborhoods: findings from the walk your heart to health intervention. <i>Health Educ Behav.</i> 2015;42(3):380-392. doi:10.1177/1090198114560015.	x				
Shapiro S, Stuckey M, Sabourin K, Munoz C, Petrella RJ. Smartphone technology versus paper-based logs for type II diabetes prevention: psychological and behavioral outcomes. <i>Can J Cardiol.</i> 2011;27(5)(suppl 1):S180-S181. doi:10.1016/j.cjca.2011.07.231.	x				
Silva-Smith AL, Fleury J, Belyea M. Effects of a physical activity and healthy eating intervention to reduce stroke risk factors in older adults. <i>Prev Med.</i> 2013;57(5):708-711. doi:10.1016/j.ypmed.2013.07.004.	х				
Slentz CA, Bateman LA, Willis LH, et al. Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. <i>Diabetologia</i> . 2016;59(10):2088- 2098. doi:10.1007/s00125-016-4051-z.	х				
Soares-Miranda L, Siscovick DS, Psaty BM, Longstreth WT Jr, Mozaffarian D. Physical activity and risk of coronary heart disease and stroke in older adults: the Cardiovascular Health Study. <i>Circulation</i> . 2016;133(2):147-155. doi:10.1161/CIRCULATIONAHA.115.018323.				х	
Soon HK, Saad HA, Taib MN, Rahman HA, Mun CY. Effects of combined physical activity and dietary intervention on obesity and metabolic parameters in adults with abdominal obesity. <i>Southeast Asian J</i> <i>Trop Med Public Health</i> . 2013;44(2):295-308.	x				
Stop sitting, get moving, to lower diabetes risk. Harv Health Lett. 2012;37(10):8.			х		
Stuckey MI, Gill DP, Shapiro S, Sabourin K, Petrella RJ. Does a prescriptive exercise program with mobile health tracking improve cardio-metabolic risk factors to a greater extent than exercise prescription alone? <i>Circulation</i> . 2013;128(22)(suppl 1):A14062.	х				
Suboc TB, Knabel D, Strath SJ, et al. Associations of reducing sedentary time with vascular function and insulin sensitivity in older sedentary adults. <i>Am J</i>	х				

Citation	Outcome	Population	Study Design	Exposure	Other
Hypertens. 2016;29(1):46-53. doi:10.1093/ajh/hpv063.					
Take a walk, reduce your risk of suffering a stroke:					
women who walk every week are less likely to have a			V		
stroke than women who don't. Harv Health Lett.			Х		
2013;38(9):6.					
Talbot LA, Metter EJ, Morrell CH, Frick KD, Weinstein					
AA, Fleg JL. A pedometer-based intervention to					
improve physical activity, fitness, and coronary heart	Х				
disease risk in National Guard personnel. Mil Med.					
2011;176(5):592-600.					
Tiessen AH, Smit AJ, Broer J, Groenier KH, van der					
Meer K. Randomized controlled trial on					
cardiovascular risk management by practice nurses	х				
supported by self-monitoring in primary care. BMC					
<i>Family Practice</i> . 2012;13:90. doi:10.1186/14/1-2296-					
13-90. Tudar Lacka C. Swift DL. Schupp IM, at al					
WalkMore: a randomized controlled trial of					
pedometer-based interventions differing on intensity			Y		
messages BMC Public Health 2014:14:168			~		
doi:10 1186/1471-2458-14-168					
Venojärvi M. Korkmaz A. Wasenius N. et al. 12					
weeks' aerobic and resistance training without					
dietary intervention did not influence oxidative					
stress but aerobic training decreased atherogenic	х				
index in middle-aged men with impaired glucose					
regulation. Food Chem Toxicol. 2013;61:127-135.					
doi:10.1016/j.fct.2013.04.015					
Venojärvi M, Wasenius N, Manderoos S, et al. Nordic					
walking decreased circulating chemerin and leptin					
concentrations in middle-aged men with impaired	Х				
glucose regulation. <i>Ann Med.</i> 2013;45(2):162-170.					
doi:10.3109/07853890.2012.727020.					
Walking lowers stroke risks in women. Harv womens			Х		
Health Watch. 2013;20(8):1, 8.					
Wang X, Hsu FC, Isom S, et al. Effects of a 12-month					
physical activity intervention on prevalence of	Ň				
metabolic syndrome in elderly men and women. J	X				
doi:10 1093/gerona/glr187					
Wiindaele K, Sharn SI, Wareham NJ, Brage S					
Mortality risk reductions from substituting screen					
time by discretionary activities. Med Sci Sports Exerc.				х	
2017;49(6):1111-1119.					
doi:10.1249/MSS.000000000001206.					
Wiklund P, Alen M, Munukka E, et al. Metabolic					
response to 6-week aerobic exercise training and					
dieting in previously sedentary overweight and	v				
obese pre-menopausal women: a randomized trial. J	^				
Sport Health Sci. 2014;3(3):217-224.					
doi:10.1016/j.jshs.2014.03.013.					
Williams PT, Thompson PD. Walking versus running				V	
tor nypertension, cholesterol, and diabetes mellitus				Х	
HISK TEQUCTION. ATTERIOSCIER THROTHD VASC BIOL					

Citation	Outcome	Population	Study Design	Exposure	Other
2013;33(5):1085-1091. doi:10.1161/ATVBAHA.112.300878.					
Yates T, Davies MJ, Sehmi S, Gorely T, Khunti K. The Pre-diabetes Risk Education and Physical Activity Recommendation and Encouragement (PREPARE) programme study: are improvements in glucose regulation sustained at 2 years? <i>Diabet Med.</i> 2011;28(10):1268-1271. doi:10.1111/j.1464- 5491.2011.03357.x.	x				
Zeki Al Hazzouri A, Mayeda ER, Elfassy T, et al. Perceived walking speed, measured tandem walk, incident stroke, and mortality in older Latino adults: a prospective cohort study. <i>J Gerontol A Biol Sci Med</i> <i>Sci.</i> 2017;72(5):676-682. doi:10.1093/gerona/glw169.				х	

References

1. Huffman KM, Sun JL, Thomas L, et al. Impact of baseline physical activity and diet behavior on metabolic syndrome in a pharmaceutical trial: results from NAVIGATOR. *Metabolism*. 2014;63(4):554-561. doi:10.1016/j.metabol.2014.01.002.

2. Ponsonby AL, Sun C, Ukoumunne OC, et al. Objectively measured physical activity and the subsequent risk of incident dysglycemia: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). *Diabetes Care*. 2011;34(7):1497-1502. doi:10.2337/dc10-2386.

3. Yates T, Davies MJ, Haffner SM, et al. Physical activity as a determinant of fasting and 2-h postchallenge glucose: a prospective cohort analysis of the NAVIGATOR trial. *Diabet Med*. 2015;32(8):1090-1096. doi:10.1111/dme.12762.

4. Yates T, Haffner SM, Schulte PJ, et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. *Lancet*. 2014;383(9922):1059-1066. doi:10.1016/S0140-6736(13)62061-9.

5. Colpani V, Oppermann K, Spritzer PM. Association between habitual physical activity and lower cardiovascular risk in premenopausal, perimenopausal, and postmenopausal women: a population-based study. *Menopause*. 2013;20(5):525-531. doi:10.1097/GME.0b013e318271b388.

6. Johnson ST, Eurich DT, Lytvyak E, et al. Walking and type 2 diabetes risk using CANRISK scores among older adults. *Appl Physiol Nutr Metab*. 2017;42(1):33-38. doi:10.1139/apnm-2016-0267.

7. Newton RL Jr, Han H, Johnson WD, et al. Steps/day and metabolic syndrome in African American adults: the Jackson Heart Study. *Prev Med*. 2013;57(6):855-859. doi:10.1016/j.ypmed.2013.09.018.

8. Yates T, Henson J, Khunti K, et al. Effect of physical activity measurement type on the association between walking activity and glucose regulation in a high-risk population recruited from primary care. *Int J Epidemiol*. 2013;42(2):533-540. doi:10.1093/ije/dyt015.

9. Herzig KH, Ahola R, Leppäluoto J, Jokelainen J, Jämsä T, Keinänen-Kiukaanniemi S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. *Int J Obes (Lond)*. 2014;38(8):1089-1096. doi:10.1038/ijo.2013.224.