# **Evidence Portfolio – Exposure Subcommittee, Question 5**<sup>1</sup>

### What is the relationship between bout duration of physical activity and health outcomes?

a. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?

### Source of Evidence: Original Research

### **Conclusion Statements and Grades**

Moderate evidence indicates that bouts of any length of moderate-to-vigorous physical activity contribute to the health benefits associated with accumulated volume of physical activity. **PAGAC Grade: Moderate.** 

Insufficient evidence is available to determine whether the relationship between physical activity accumulated in bouts with a duration of less than 10 minutes and health outcomes varies by age, sex, race/ethnicity, or socioeconomic status. **PAGAC Grade: Not assignable.** 

### **Description of the Evidence**

An initial search for systematic reviews, meta-analyses, pooled analyses, and reports did not identify sufficient literature to answer the research question as determined by the Exposure Subcommittee. A complete de novo search of original research was conducted.

### **Original Research**

### Overview

A total of 25 original research studies that examined the relationship between bouts of physical activity and different health outcomes were included as sources of evidence. Of the 25 studies, 11 were randomized control trials,  $\frac{1\cdot11}{2}$  2 prospective cohort,  $\frac{12}{12}$ ,  $\frac{13}{2}$  and 12 cross-sectional.  $\frac{14\cdot25}{2}$  The studies were published from 1995 to 2017.

The analytical sample size ranged from  $22^{4}$  to  $6,321.^{22}$  Of the studies that reported location, 11 were conducted in the United States, 4, 7, 10, 13, 16, 18-20, 22, 23, 25 3 in Japan, 5, 14, 15 and 1 in Canada.<sup>17</sup> Other locations included Finland,  $2^{4}$  Italy,  $1^{2}$  and United Kingdom.<sup>8</sup> 11, 21

### Exposures

The included studies examined physical activity performed in short bouts of different durations. The majority of studies (n=16) used accelerometers to measure physical activity, 6.7, 12-25 and  $4^{1}$ , 3, 5, 8 used self-report (exercise logs/diaries). Other methods of exposure assessment included heart rate monitor and pedometer, 10 combination of self-report and heart rate monitor, 2, 9, 11 and direct supervision of exercise session. 4

<sup>&</sup>lt;sup>1</sup> Question 2 in Chapter 1. Physical Activity Behaviors: Steps, Bouts, And High Intensity Training

#### Outcomes

The included studies examined various cardiometabolic risk factors, including weight status, body composition, blood lipids, blood pressure, metabolic syndrome, risk of type 2 diabetes, and risk of cardiovascular disease.

### **Populations Analyzed**

The table below lists the populations analyzed in each article.

Table 1. Populations Analyzed by All Sources of Evidence

|                 | Sex          | Race/ Ethnicity                                            | Age                         | Weight Status                                      | Other           |
|-----------------|--------------|------------------------------------------------------------|-----------------------------|----------------------------------------------------|-----------------|
| Alizadeh, 2013  | Female       |                                                            | 20–45 years                 | Overweight<br>and Obese                            |                 |
| Asikainen, 2003 | Female       |                                                            | 48–63 years                 |                                                    | Post-menopausal |
| Asikainen, 2002 | Female       |                                                            | 47–64 years                 |                                                    | Post-menopausal |
| Ayabe, 2013     | Female       | Asian                                                      | 40–60 years                 |                                                    |                 |
| Ayabe, 2012     | Female       | Asian                                                      | 40–60 years                 |                                                    |                 |
| Cameron, 2017   | Male, Female | Hispanic or Latino,<br>Non-Hispanic or<br>Latino, Other    | ≤43, >43 years              | Overweight<br>and Obese                            |                 |
| Clarke, 2014    |              |                                                            | 18–64 years                 |                                                    |                 |
| Di Blasio, 2014 | Female       |                                                            | <65 years                   |                                                    | Post-menopausal |
| Donnelly, 2000  | Female       |                                                            | Mean age 54<br>and 49 years | Overweight<br>and Obese                            |                 |
| Eguchi, 2013    | Male         |                                                            | Mean age 43<br>years        |                                                    |                 |
| Fan, 2013       | Male, Female | Black or African<br>American, Hispanic<br>or Latino, Other | 18–64 years                 | Normal/Health<br>y Weight,<br>Overweight,<br>Obese |                 |
| Gay, 2016       |              |                                                            | >18 years                   |                                                    |                 |
| Glazer, 2013    |              | White                                                      | Mean age 47<br>years        |                                                    |                 |
| Jakicic, 1995   | Female       |                                                            | 25–50 years                 | Obese (BMI: 30<br>and above)                       |                 |
| Jakicic, 1999   | Female       |                                                            | 25–45 years                 | Overweight<br>and Obese                            |                 |
| Jefferis, 2016  | Male         |                                                            | 71–91 years                 |                                                    |                 |
| Loprinzi, 2013  |              |                                                            | 18–85 years                 |                                                    |                 |
| Murtagh, 2005   |              |                                                            | Mean age 45<br>years        |                                                    |                 |
| Quinn, 2006     |              |                                                            | 29–65 years                 |                                                    |                 |
| Schmidt, 2001   | Female       |                                                            | Mean age 20<br>years        | Overweight<br>and Obese                            |                 |

|                       | Sex          | Race/ Ethnicity | Age         | Weight Status | Other |
|-----------------------|--------------|-----------------|-------------|---------------|-------|
| Strath, 2008          |              |                 | >18 years   |               |       |
| Vasankari, 2017       |              |                 | 18–85 years |               |       |
| White, 2015           |              |                 | 37–55 years |               |       |
| Wolff-Hughes,<br>2015 |              |                 | ≥20 years   |               |       |
| Woolf-May, 1999       | Male, Female |                 | 40–66 years |               |       |

### **Supporting Evidence**

### **Original Research**

Table 2. Original Research Individual Evidence Summary Tables

### **Original Research**

**Citation:** Alizadeh, Z, Kordi, et al. Comparison between the effects of continuous and intermittent aerobic exercise on weight loss and body fat percentage in overweight and obese women: a randomized controlled trial. *Int J Prev Med.* 2013;4(8):881–888.

**Purpose:** To compare the effect of intermittent and continuous exercise on weight and fat percentage of overweight and obese women.

| Study Design: Group randomized trial       | Abstract: BACKGROUND: Prevalence of obesity and              |
|--------------------------------------------|--------------------------------------------------------------|
| Location: Not Reported                     | overweightness in different societies is increasing. Role of |
| Sample: 45                                 | physical activity in weight loss and also prevention from    |
| Attrition Rate: 0.00%                      | some chronic diseases has been discussed previously. The     |
| Sample Power: Not Reported                 | objective of this study was to compare the effect of two     |
| Intervention: Yes                          | different aerobic exercises (intermittent and continuous     |
| Intervention Type: Provision of            | exercises) while prescribed with concurrent calorie-         |
| Information/Education, Behavioral          | restrict diet on the weight loss and body fat of             |
| Intervention Length: 12 weeks              | overweight and obese females. METHODS: Fifteen               |
| Exposure Measurement                       | individuals in intermittent group performed 40 min           |
| Self-Reported: Walking                     | moderate Intensity exercise in 3 bouts per day for 5 days    |
| Exposure/Intervention                      | per week; the 15 participants of continuous group            |
| Frequency: Group 1: one bout per day,      | exercised a single 40 min bout per day, 5 days per week.     |
| five days per week; Group 2: three bouts   | Also, 15 participants were included in control group         |
| per day, five days per week with           | without exercise program. A self-monitoring calorie-         |
| adaptation period of two bouts per day     | restrict diet was recommended to all participants. The       |
| during first and second week.              | body fat percentage, waist circumference, and also skin      |
| Intensity: Moderate intensity (64–75%      | fold thickness of all participants were assessed at          |
| maximum heart rate, RPE between 13         | baseline and 12(th) weeks. RESULTS: The reduction of         |
| and 14, ability of talking is around two   | weight and BMI of participants in intermittent group (-      |
| words).                                    | 3.33 +/- 1.80 and -1.34 +/- 0.70, respectively) was          |
| Time: Group 1: 40 min per day with         | significantly more than comparable changes in                |
| adaptation period of 20 and 30 min per     | continuous group (-1.23 +/- 1.60 and 0.49 +/- 0.65,          |
| day in first and second week; Group 2: all | respectively) (P = 0.048 and 0.041, respectively). After the |
| bouts more than 10 min and sum was 40      | intervention, there was no significant difference between    |
| min (with adaptation period of two and     | case and controls in terms of body fat percentage, waist     |
| three bouts of 10 min for 20 and 30 min    | circumference, and sum of skin fold thickness.               |
| per day in first and second week).         | CONCLUSIONS: It seems that moderate intensity                |
| Type: Cardiorespiratory, Aerobic           | intermittent exercise for more than 150 min/ week is         |
| exercises (such as brisk walking)          | more efficient than continuous exercise in weight loss of    |
| Measures Steps: No                         | obese and overweight women.                                  |
| Measures Bouts: Yes                        |                                                              |
| Examines HIIT: No                          |                                                              |
| Refers to Other Materials: No              | Outcomes Examined: Anthropometric measures: weight,          |
| Adverse Events Addressed: No               | BMI, skin fold thickness, waist circumference, and fat       |
|                                            | percentage.                                                  |

| Examine Cardiorespiratory Fitness as |                                                         |
|--------------------------------------|---------------------------------------------------------|
| Outcome: No                          |                                                         |
| Populations Analyzed: Female, 20–45  | Author-Stated Funding Source: Shariati Hospital, Tehran |
| years, Overweight and Obese          | University of Medical Sciences                          |

| Original Research                             |                                                            |  |  |
|-----------------------------------------------|------------------------------------------------------------|--|--|
| Citation: Asikainen TM, Miilunpalo S, Kukko   | nen-Harjula K, et al. Walking trials in postmenopausal     |  |  |
| women: effect of low doses of exercise and    | exercise fractionization on coronary risk factors. Scand J |  |  |
| ,<br>Med Sci Sports. 2003;13(5):284–292.      |                                                            |  |  |
| Purpose: To evaluate a fractionization of wa  | Iking training and the minimum dose to affect coronary     |  |  |
| risk factors in two randomized controlled tri | als.                                                       |  |  |
| Study Design: Randomized trial                | Abstract: We studied the fractionization of walking        |  |  |
| Location: Not Reported                        | training and searched for the minimum dose to affect       |  |  |
| Sample: 226                                   | coronary risk factors in two randomized controlled trials. |  |  |
| Attrition Rate: 11.37%                        | Altogether 134 (Study I) and 121 (Study II) healthy,       |  |  |
| Sample Power: Not Reported                    | sedentary postmenopausal women started the trials,         |  |  |
| Intervention: Yes                             | and 130 (Study I) and 116 (Study II) completed them. In    |  |  |
| Intervention Type: Behavioral                 | Study I the exercise intensity was 65% of the maximal      |  |  |
| Intervention Length: Study 1 (Group 1         | aerobic power (VO2max) and a total of 300 kcal was         |  |  |
| and 2: 15 weeks); Study 2 (Group 3–6: 24      | expended in one (Group W1) or two (Group W2) daily         |  |  |
| weeks)                                        | walking bouts. In Study II the exercise was continuous,    |  |  |
| Exposure Measurement                          | and the exercise intensity (% of VO2max) and energy        |  |  |
| Self-Reported: Questionnaire at beginning     | expenditure (kcal session(-1)) were 55% and 300 kcal       |  |  |
| and end of study, in addition to exercise     | (Group W3), 45% and 300 kcal (Group W4), 55% and 200       |  |  |
| diary.                                        | kcal (Group W5) and 45% and 200 kcal (Group W6). All       |  |  |
| Device-Measured: Heart rate monitors          | the subjects walked 5 days a week. The outcome             |  |  |
| and step counters used to measure             | measures were blood pressure, serum lipoproteins and       |  |  |
| exercise                                      | blood glucose and plasma insulin in fasting state and also |  |  |
| Other: 2/5 weekly sessions were               | during 2-h oral glucose tolerance test in Study I. There   |  |  |
| supervised                                    | was no change in diastolic pressure in the original study  |  |  |
| Exposure/Intervention                         | groups, but in the combined exercise group (W1+W2) in      |  |  |
| Frequency: Group 1: 1 session per day, 5      | Study I, the mean diastolic pressure declined by -3.0      |  |  |
| days per week; Group 2: 2 sessions per        | mmHg (95% con-fidence interval (CI) -5.5 to -0.4)          |  |  |
| day, 5 days per week; Control: no training;   | (P=0.025) in comparison with that of the controls. The     |  |  |
| Group 3–6: 5 days per week.                   | mean blood glucose declined by -0.21 mmol L(-1) (CI -      |  |  |
| Intensity: Group 1 and 2: 65% of VO2          | 0.33 to -0.09) in Group W1 and -0.13 mmol L(-1) (CI -0.25  |  |  |
| max; Group 3: 55%; Group 4: 45%; Group        | to -0.01) in Group W2 compared to controls (P=0.03).       |  |  |
| 5: 55%; Group 6: 45% of VO2 max.              | Also the 2-h glucose concentration decreased in Groups     |  |  |
| Time: Group 1–2: time to expend 300           | W1 and W2 compared to controls. Systolic blood             |  |  |
| kcal; Group 3–4: time to expend 300 kcal;     | pressure, serum lipoproteins and insulin levels did not    |  |  |
| Group 5–6 time to expend 200 kcal.            | change in Study I or Study II. We conclude that our        |  |  |
| Type: Cardiorespiratory, walking              | training program with the greatest exercise dose,          |  |  |
| Examines HIIT: No                             | exercise intensity 65% of VO2max and weekly                |  |  |
| Measures Steps: No                            | expenditure of 1500 kcal had a minimal, positive effect    |  |  |
| Measures Bouts: Yes                           | on diastolic pressure and blood glucose, and the effect    |  |  |
|                                               | was similar in one or two daily exercise session groups.   |  |  |
|                                               | This exercise dose is probably close to the minimum to     |  |  |
|                                               | affect coronary risk factors in healthy postmenopausal     |  |  |
|                                               | women. To get a more pronounced and clinically             |  |  |
|                                               | relevant effect, a greater exercise dose is needed.        |  |  |

| Refers to Other Materials: Yes       | Outcomes Examined: Blood pressure: random zero         |
|--------------------------------------|--------------------------------------------------------|
| Adverse Events Addressed: No         | sphygomanometer after resting. Blood lipids (HDL-C,    |
| Examine Cardiorespiratory Fitness as | LDL-C, total cholesterol, and triglycerides): standard |
| Outcome: Yes                         | measure. Blood glucose: glucose dehydrogenase          |
|                                      | method. Cardiorespiratory fitness: maximal exercise    |
|                                      | test. Body mass: not described.                        |
| Populations Analyzed: Female, 48–63  | Author-Stated Funding Source: Finnish Ministry of      |
| years, Post-menopausal               | Education, the Juho Vainio Foundation, Finnish         |
|                                      | Foundation for Cardiovascular Research, Ulla Kauhanen  |
|                                      | Foundation                                             |

| Original Research                                                                                  |                                                  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| Citation: Asikainen TM, Miilunpalo S, Oja P, Rinne M, Pasanen M, Vuori I. Walking trials in        |                                                  |  |
| postmenopausal women: effect of one vs two daily bouts on aerobic fitness. Scand J Med Sci Sports. |                                                  |  |
| 2002;12(2):99–105. doi:10.1034/j.1600-0838.2002.12                                                 | 20206.x.                                         |  |
| <b>Purpose:</b> To compare the effects of equivolume brisk                                         | walking, once or twice a day, on aerobic fitness |  |
| and body composition on 134 post-menopausal wom                                                    | ien.                                             |  |
| Study Design: Randomized trial                                                                     | Abstract: We compared the effects of one vs      |  |
| Location: Not Reported                                                                             | two daily bouts of walking on aerobic fitness    |  |
| Sample: 134                                                                                        | and body composition in postmenopausal           |  |
| Attrition Rate: 0.00%                                                                              | women. One hundred and thirty-four subjects      |  |
| Sample Power: Yes                                                                                  | were randomized into exercise groups or a        |  |
| Intervention: Yes                                                                                  | control group and 130 completed the study.       |  |
| Intervention Type: Behavioral                                                                      | The subjects walked 5 d/week for 15 weeks at     |  |
| Intervention Length: 15 weeks                                                                      | 65% of their maximal aerobic power expending     |  |
| Exposure Measurement                                                                               | 300 kcal (1255 kJ) in exercise in one (Group S1) |  |
| Self-Reported: Exercise diaries to record                                                          | or two daily sessions (Group S2). VO(2max) was   |  |
| programmed exercise and other habitual exercise.                                                   | measured in a direct maximal treadmill test.     |  |
| Other: Heart rate monitor to control the walking                                                   | Body mass index (BMI) was calculated and the     |  |
| pace in the 2-weekly supervised sessions and every                                                 | percentage of body fat (fat%) estimated using    |  |
| third week in all weekly sessions.                                                                 | skinfold measurements. The net change in the     |  |
| Measures Steps: Yes                                                                                | VO(2max) was 2.5 mL min/kg (95% CI 1.5, 3.5)     |  |
| Measures Bouts: Yes                                                                                | (8.7%) in Group S1 and 2.5 mL min/kg (95% CI     |  |
| Examines HIIT: No                                                                                  | 1.5, 3.5) (8.8%) in Group S2. The net change in  |  |
| Exposure/Intervention                                                                              | body mass was -1.2 kg (95% CI-1.9, -0.5) in      |  |
| <b>Frequency:</b> 5 days/week. Group S1: once/day;                                                 | Group S1 and -1.1 kg (95% CI -1.8, -0.4) in      |  |
| Group S2: twice/day; Control: no daily walking                                                     | Group S2. The net fat% change was -2.1% (95%     |  |
| Intensity: 65% of the VO2 max and the weekly                                                       | CI-2.7, -1.4) in Group S1 and -1.7% (95% CI-2.3, |  |
| exercise volume 1,500 kcal (6,276kJ).                                                              | -1.0) in Group S2. Exercise improved the         |  |
| Time: Duration of daily exercise corresponding to                                                  | maximal aerobic power and body composition       |  |
| 300 kcal (1,256 kJ) calculated individually. Group 1:                                              | equally when walking was performed in one or     |  |
| Continuous activity; Group 2: divided into two                                                     | two daily bouts.                                 |  |
| equally long sessions with at least a 5-h interval.                                                |                                                  |  |
| <b>Type:</b> Cardiorespiratory: two supervised and three                                           |                                                  |  |
| unsupervised walking sessions per week.                                                            |                                                  |  |
| Refers to Other Materials: No                                                                      | Outcomes Examined: Changes in VO2max             |  |
| Adverse Events Addressed: No                                                                       | (ml/kg/min). Submaximal cardiorespiratory        |  |
| Examine Cardiorespiratory Fitness as Outcome:                                                      | fitness (heart rate max at 65%. 75%VO2 max).     |  |
| Yes                                                                                                | Body composition: weight (kg), body mass         |  |
|                                                                                                    | index (kg/m2), and body fat (%).                 |  |
| Populations Analyzed: Female, 47–64 years. Post-                                                   | Author-Stated Funding Source: The Finnish        |  |
| menopausal                                                                                         | Ministry of Education, the Juho Vainio           |  |
|                                                                                                    | Foundation, the Finnish Foundation for           |  |
|                                                                                                    | Cardiovascular Research                          |  |

| Original Research                                                                                      |                                                           |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Citation: Ayabe M, Kumahara H, Morimura K, Sakane N, Ishii K, Tanaka H, et al. Accumulation of short   |                                                           |  |
| bouts of non-exercise daily physical activity is associated with lower visceral fat in Japanese female |                                                           |  |
| adults. Int J Sports Med. 2013;34(1):62-67.                                                            | doi:10.1055/s-0032-1314814.                               |  |
| Purpose: To assess the relationship between                                                            | n the very short physical activity (PA) bout lasting 32   |  |
| seconds to 5 minutes and abdominal fat.                                                                |                                                           |  |
| Study Design: Cross-sectional study                                                                    | Abstract: The purpose of the present investigation was    |  |
| Location: Japan                                                                                        | to assess the relationship between bouts of very short    |  |
| Sample: 42                                                                                             | daily physical activity (PA) lasting <10 min with obesity |  |
| Attrition Rate: 0.00%                                                                                  | and abnormal fat distributions. A total of 42 females     |  |
| Sample Power: Not Reported                                                                             | (age 50+/-6 years, height 156+/-5 cm, body weight 54+/-   |  |
| Intervention: No                                                                                       | 8 kg, body mass index 22+/-3 kg/m2) participated in the   |  |
| Exposure Measurement                                                                                   | present investigation. Computed tomography was used       |  |
| Device-Measured: Accelerometer,                                                                        | to evaluate the area of visceral adipose tissue and       |  |
| minutes per day spent performing PA of                                                                 | subcutaneous adipose tissue (VAT and SAT). All            |  |
| various intensities including light (LPA),                                                             | participants wore a pedometer with a one-axial            |  |
| moderate (MPA), vigorous (VPA), and                                                                    | accelerometer (Lifecorder, Kenz, Japan) in order to       |  |
| moderate-to-vigorous (MVPA) were                                                                       | determine their frequency (bouts/day) of PA and           |  |
| assessed; PA also assessed according to                                                                | moderate to vigorous intensity PA (MVPA). The total       |  |
| the duration of the bout: daily time spent                                                             | frequency of PA and MVPA, including all bout durations,   |  |
| on LPA, MPA, VPA, and MVPA lasting at                                                                  | was not significantly associated with the body fat        |  |
| least 32 s, 1 min, 3 min, 5 min and 10 min                                                             | distribution. The frequency of PA lasting longer than 3   |  |
| were assessed along with the frequency                                                                 | min and 5 min, and MVPA lasting longer than 1 min and     |  |
| (bouts/day) for each bout duration.                                                                    | 3 min were significantly associated with the area of the  |  |
| Measures Steps: No                                                                                     | VAT (p<0.05). A smaller area of VAT was associated with   |  |
| Measures Bouts: Yes                                                                                    | a higher frequency of PA and MVPA lasting 1-5 min. The    |  |
| Examines HIIT: No                                                                                      | present investigation did not find that very short bouts  |  |
|                                                                                                        | of PA lasting<1 min played a significant role in          |  |
|                                                                                                        | controlling abdominal fat distribution.                   |  |
| Refers to Other Materials: No                                                                          | Outcomes Examined: Body Mass Index: weight and            |  |
| Examine Cardiorespiratory Fitness as                                                                   | height directly measured. Waist circumference: standard   |  |
| Outcome: No                                                                                            | tape measure at height of navel. Whole body body fat      |  |
|                                                                                                        | percentage: 2-site skinfold thickness. Abdominal fat      |  |
|                                                                                                        | area: computed tomography (CT) to determine visceral      |  |
|                                                                                                        | adipose tissue (VAT) and subcutaneous adipose tissue      |  |
|                                                                                                        | (SAT).                                                    |  |
| Populations Analyzed: Female, Asian, 40–                                                               | Author-Stated Funding Source: Fukuoka University          |  |
| 60 years                                                                                               |                                                           |  |

| Original Research                                   |                                                              |  |
|-----------------------------------------------------|--------------------------------------------------------------|--|
| <b>Citation:</b> Ayabe, M, Kumahara, H, et al. Very | short bouts of non-exercise physical activity associated     |  |
| with metabolic syndrome under free-living           | conditions in Japanese female adults. Eur J Appl Physiol.    |  |
| 2012;112(10):3525-3532. doi:10.1007/s004            | 21-012-2342-8.                                               |  |
| Purpose: To assess the relationship betwee          | n very short physical activity (PA) lasting <5 min with      |  |
| obesity and metabolic syndrome (MS).                |                                                              |  |
| Study Design: Cross-sectional study                 | Abstract: To assess the association between very short       |  |
| Location: Japan                                     | daily non-exercise physical activity (PA) lasting <5 min     |  |
| Sample: 42                                          | and metabolic syndrome (MS). A total of 42 females (50       |  |
| Attrition Rate: 0.00%                               | +/- 6 years) wore a pedometer with a one-axial               |  |
| Sample Power: Not Reported                          | accelerometer (Lifecorder, Kenz, Japan) to determine         |  |
| Intervention: No                                    | the time and the frequency of PA and the moderate to         |  |
| Exposure Measurement                                | vigorous intensity PA (MVPA). In addition to the PA and      |  |
| Device-Measured: One-axial                          | the MVPA (PA(all) and MVPA(all)), the PA and MVPA            |  |
| accelerometer, determined the time and              | were analyzed based on the bout duration, such as >32        |  |
| the frequency of PA and the moderate to             | s, >1 min, >3 min, and >5 min (PA(32S), PA(1M), PA(3M),      |  |
| vigorous intensity PA (MVPA). PA and                | PA(5M); MVPA(32S), MVPA(1M), MVPA(3M),                       |  |
| MVPA were also analyzed based on the                | MVPA(5M)). MS was defined according to the Japanese          |  |
| bout duration, such as >32 s, >1 min, >3            | standard based on waist circumfluence, blood lipids,         |  |
| min, and >5 min.                                    | blood glucose, and blood pressure. The frequency of the      |  |
| Measures Steps: Yes                                 | MVPA(1M) was significantly lower in subjects with MS         |  |
| Measures Bouts: Yes                                 | compared with that in subjects without MS ( $P < 0.05$ ).    |  |
| Examines HIIT: No                                   | The frequency of MVPA(32S) and MVPA(1M) was                  |  |
|                                                     | significantly associated with the HDL cholesterol (P <       |  |
|                                                     | 0.05). The frequency of PA(3M) and PA(5M) was                |  |
|                                                     | significantly associated with the fasting glucose level (P < |  |
|                                                     | 0.05). In contrast, we could not find any significant        |  |
|                                                     | relationships between MS and the components of MS            |  |
|                                                     | and the frequency of PA lasting <32 s. These results         |  |
|                                                     | demonstrated that very short non-exercise PA, such as        |  |
|                                                     | MVPA lasting >32 s to 3 min, has significantly associated    |  |
|                                                     | with the components of MS. The specific advantages           |  |
|                                                     | with regard to PA lasting <32 s remain unclear.              |  |
| Refers to Other Materials: No                       | Outcomes Examined: Metabolic syndrome (MS) was               |  |
| Examine Cardiorespiratory Fitness as                | defined according to the Japanese standard based on          |  |
| Outcome: No                                         | waist circumfluence (≥90 cm), blood lipids, blood            |  |
|                                                     | glucose, and blood pressure. For the diagnosis of MS, a      |  |
|                                                     | waist circumference (WC) $\geq$ 90 cm is considered to be an |  |
|                                                     | essential component, along with at least two of the          |  |
|                                                     | other components, including dyslipidemia (triglycerides      |  |
|                                                     | ≥150 mg/dl and/or HDL-C level <40 mg dl-1, or specific       |  |
|                                                     | treatment for these lipid abnormalities), hypertension       |  |
|                                                     | (SBP 2130 mmHg and/or DBP 285 mmHg, or treatment             |  |
|                                                     | of previously diagnosed hypertension), or hyperglycemia      |  |
|                                                     | (Tasting plasma glucose ≥110 mg/dl).                         |  |
| Populations Analyzed: Female, Asian, 40–            | Author-Stated Funding Source: Fukuoka University, Kao        |  |
| 60 years                                            | Research Council for the Study of Health Science             |  |

**Citation:** Cameron N, Godino J, Nichols JF, Wing D, Hill L, Patrick K. Associations between physical activity and BMI, body fatness, and visceral adiposity in overweight or obese Latino and non-Latino adults. *Int J Obes (Lond)*. 2017;41(6):873–877. doi:10.1038/ijo.2017.49.

**Purpose:** To evaluate the associations between body composition and moderate-to-vigorous physical activity (MVPA) in Latino and non-Latino adults.

| Study Design: Cross-sectional    | Abstract: BACKGROUND/OBJECTIVES: Although several studies             |
|----------------------------------|-----------------------------------------------------------------------|
| study                            | have reported associations between moderate to vigorous               |
| Location: United States          | physical activity (MVPA), body fatness and visceral adipose tissue    |
| Sample: 236                      | (VAT), the extent to which associations differ among Latinos and      |
| Attrition Rate: 20.80%           | non-Latinos remains unclear. This study evaluated the associations    |
| Sample Power: Not Reported       | between body composition and MVPA in Latino and non-Latino            |
| Intervention: No                 | adults. SUBJECTS/METHODS: An exploratory, cross-sectional             |
| Exposure Measurement             | analysis was conducted using baseline data collected from 298         |
| Device-Measured:                 | overweight adults enrolled in a 12-month randomized controlled        |
| Accelerometer, MVPA outcome      | trial that tested the efficacy of text messaging to improve weight    |
| variables of interest included:  | loss. MVPA, body fatness and VAT were assessed by waist-worn          |
| (1) average minutes of MVPA      | accelerometry, dual-energy x-ray absorptiometry (DXA), and DXA-       |
| per day (MVPA), (2) average      | derived software (GE CoreScan GE, Madison, WI, USA),                  |
| minutes of MVPA performed in     | respectively. Participants with <5 days of accelerometry data or      |
| bouts of ≥10 min per day (MVPA   | missing DXA data were excluded; 236 participants had complete         |
| bouts), (3) average minutes of   | data. Multivariable linear regression assessed associations           |
| MVPA performed in <10 min        | between body composition and MVPA per day, defined as time in         |
| bouts (non-bouts MVPA) and (4)   | MVPA, bouts of MVPA (time per bout 10 min), non-bouts of MVPA         |
| a yes/no binary determined       | (time per bout <10 min) and meeting the 150-min MVPA guideline.       |
| upon performing at least 150     | The modifying influence of ethnicity was modeled with a               |
| min of MVPA in bouts of ≥10      | multiplicative interaction term. RESULTS: The interaction between     |
| min (Meeting Guidelines).        | ethnicity and MVPA in predicting percent body fat was significant     |
| Measures Steps: No               | (P=0.01, 95% confidence interval (CI) (0.58, 4.43)) such that a given |
| Measures Bouts: Yes              | increase in MVPA was associated with a greater decline in total       |
|                                  | body fat in non-Latinos compared with Latinos (adjusted for age,      |
|                                  | sex and accelerometer wear time). There was no interaction            |
|                                  | between ethnicity and MVPA in predicting VAT (g) (P=0.78, 95% CI      |
|                                  | (-205.74, 273.17)) and body mass index (BMI) (P=0.18, 95% CI (-       |
|                                  | 0.49, 2.26)). CONCLUSIONS: An increase in MVPA was associated         |
|                                  | with a larger decrease in body fat, but neither BMI nor VAT, in       |
|                                  | non-Latinos compared with Latinos. This suggests that changes in      |
|                                  | VAT and BMI in response to MVPA may be less influenced by             |
|                                  | ethnicity than is total body fatness.                                 |
| Refers to Other Materials: No    | Outcomes Examined: Body mass index: objectively measured.             |
| Examine Cardiorespiratory        | Percentage body fat: dual-energy x-ray absorptiometry. Visceral       |
| Fitness as Outcome: No           | adipose tissue (g): dual-energy x-ray absorptiometry.                 |
| Populations Analyzed: Male,      | Author-Stated Funding Source: National Institutes of Health           |
| Female, Hispanic or Latino, Non- |                                                                       |
| Hispanic or Latino, Other, ≤43   |                                                                       |
| years, >43 years, Overweight     |                                                                       |
| and Obese                        |                                                                       |

**Citation:** Clarke J, Janssen I. Sporadic and bouted physical activity and the metabolic syndrome in adults. *Med Sci Sports Exerc*. 2014;46(1):76–83. doi:10.1249/MSS.0b013e31829f83a0.

**Purpose:** To determine whether bouted moderate-to-vigorous PA (MVPA) is more strongly associated with cardiometabolic risk factors, specifically with the metabolic syndrome, than an equivalent volume of sporadic MVPA among adults.

| Study Design: Cross-sectional study    | Abstract: PURPOSE: Physical activity guidelines recommend       |
|----------------------------------------|-----------------------------------------------------------------|
| Location: Canada                       | that adults accumulate at least 150 min of moderate-to-         |
| Sample: 1,119                          | vigorous physical activity (MVPA) per week in bouts of at       |
| Attrition Rate: 0.00%                  | least 10 min. However, sporadic MVPA contributes                |
| Sample Power: Not Reported             | significantly to total physical activity and may also affect    |
| Intervention: No                       | health. The study objective was to determine, within adults     |
| Exposure Measurement                   | age 18 to 64 yr, whether MVPA accumulated in bouts is more      |
| Self-Reported:                         | strongly associated with metabolic syndrome (MetS) than an      |
| Device-Measured: Calculated bouted     | equivalent volume of MVPA accumulated sporadically.             |
| MVPA (accumulated in at least 10-      | METHODS: The study sample included 1119 adults age 18 to        |
| min bouts) and sporadic MVPA           | 64 yr from the 2007-2009 Canadian Health Measures Survey,       |
| (accumulated in period of 9 min or     | a nationally representative cross-sectional study. The energy   |
| less); participants were also divided  | expenditure from bouted (at least 10 consecutive minutes)       |
| into three groups for both sporadic    | and sporadic (<10 consecutive minutes) MVPA was measured        |
| and bouted MVPA using cutpoints in     | for 7 d using Actical accelerometers. The presence of MetS      |
| metabolic equivalent (MET)             | was determined using established criteria. Associations were    |
| min/week equivalent to the physical    | examined using logistic regression and controlled for           |
| activity guidelines: inactive (0–249), | covariates (age, sex, education, diet, and smoking). RESULTS:   |
| somewhat active (250–499 or            | After adjusting for the covariates and each other, bouted and   |
| meeting 50% of the guideline), and     | sporadic MVPA were independently associated with the            |
| active (≥500 MET-minutes or meeting    | MetS. For each additional MET-hour per week of bouted           |
| 100% of the guideline).                | MVPA, the relative odds of the MetS decreased by 9% (95%        |
| Measures Steps: No                     | confidence interval, 3%-14%). For each additional MET-hour      |
| Measures Bouts: Yes                    | per week of sporadic MVPA, the relative odds of the MetS        |
| Examines HIIT: No                      | decreased by 11% (5%-16%). Overlapping confidence interval      |
|                                        | indicates no difference in the effect estimates for bouted and  |
|                                        | sporadic MVPA. Secondary analyses revealed that small           |
|                                        | bursts of sporadic MVPA (1-3 min) were meaningful when          |
|                                        | predicting the MetS. CONCLUSION: Within this representative     |
|                                        | sample of Canadian adults, sporadic MVPA was associated         |
|                                        | with the MetS to a similar order of magnitude as an             |
|                                        | equivalent volume of bouted MVPA.                               |
| Refers to Other Materials: Yes         | Outcomes Examined: Metabolic syndrome (MetS): presence          |
| Examine Cardiorespiratory Fitness as   | of three or more of the following conditions: high blood        |
| Outcome: No                            | pressure, high triglycerides, low HDL cholesterol, high fasting |
|                                        | blood glucose, and high waist circumference. Also estimates     |
|                                        | for each risk factor presented independently.                   |
| Populations Analyzed: 18–64 years      | Author-Stated Funding Source: Heart and Stroke Foundation       |
|                                        | of Ontario                                                      |

| Original Research                                                                                      |                                                          |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| Citation: Di Blasio A, Bucci I, Ripari P, et al. Lifestyle and high density lipoprotein cholesterol in |                                                          |  |  |
| postmenopause. Climacteric. 2014;17(1):37-47. doi:10.3109/13697137.2012.758700.                        |                                                          |  |  |
| Purpose: To investigate variables linked with basal plasma high density lipoprotein (HDL) cholesterol  |                                                          |  |  |
| levels and the effects of aerobic training, on their variations, in 40 post-menopausal women.          |                                                          |  |  |
| Study Design: Prospective cohort study                                                                 | Abstract: OBJECTIVES: Menopause is characterized         |  |  |
| Location: Italy                                                                                        | by hormonal and metabolic changes. These are             |  |  |
| Sample: 40                                                                                             | linked to increased risk of cardiovascular disease, for  |  |  |
| Attrition Rate: 0.00%                                                                                  | which low blood plasma levels of high density            |  |  |
| Sample Power: Not Reported                                                                             | lipoprotein (HDL) cholesterol are an independent         |  |  |
| Intervention: Yes                                                                                      | risk factor. The present study investigated variables    |  |  |
| Intervention Type: Behavioral                                                                          | linked with basal plasma HDL cholesterol levels and      |  |  |
| Intervention Length: 14 weeks                                                                          | the effects of aerobic training, on their variations, in |  |  |
| Exposure Measurement                                                                                   | 40 postmenopausal women. METHODS: We                     |  |  |
| Device-Measured: Daily physical activity (PA)                                                          | assessed body composition, dietary habits and            |  |  |
| in a free-living context assessed before and                                                           | maximal aerobic capacity of participants.                |  |  |
| after the exercise program over 3 consecutive                                                          | Characteristics of daily physical activity and plasma    |  |  |
| days using SenseWear Pro 2 armbands; the                                                               | lipoproteins were measured. The women walked on          |  |  |
| number of daily bouts of PA spent at                                                                   | 4 days/week, for 14 weeks, at moderate intensity,        |  |  |
| moderate and/or vigorous intensity that                                                                | and they were grouped according to the resulting         |  |  |
| lasted for at least 5 and 10 consecutive                                                               | tertiles of basal plasma HDL cholesterol levels.         |  |  |
| minutes were measured. Other measures                                                                  | RESULTS: Logistic regression analysis showed that        |  |  |
| included: metabolic equivalent (MET)                                                                   | waist-to-hip ratio and number of daily bouts of          |  |  |
| min/day, daily steps, time per day spent on                                                            | moderate-intensity physical activity, held for at least  |  |  |
| moderate (3 METs ) and on vigorous-intensity                                                           | 10 consecutive minutes (B10m/day), are predictive        |  |  |
| PA (6 METs), energy expenditure from                                                                   | variables of basal plasma HDL cholesterol levels.        |  |  |
| moderate and vigorous PA, and low-intensity                                                            | After the training period, the first and second          |  |  |
| PA. Volume of the exercise program was also                                                            | tertiles increased plasma HDL cholesterol levels,        |  |  |
| calculated (sum of the volume for each                                                                 | while the third tertile decreased plasma HDL             |  |  |
| completed session calculated by multiplying                                                            | cholesterol levels. The tertiles showed different        |  |  |
| time of the session, in minutes, by the ratings                                                        | remodelling of spontaneous physical activity: the        |  |  |
| of the perceived exertion (RPE) points.                                                                | third tertile reduced B10m/day, while the others ald     |  |  |
| Measures Steps: Yes                                                                                    | not. CONCLUSIONS. This study provides knowledge          |  |  |
| Measures Bouts: Yes                                                                                    | about the relationships of plasma HDL cholesteror        |  |  |
| Examines HIIT: No                                                                                      | Eurthermore, it shows that physical eversion             |  |  |
| Exposure/Intervention                                                                                  | engagement can result in negative compensation of        |  |  |
| Frequency: 1 time per day, 4 days per week                                                             | engagement can result in negative compensation of        |  |  |
| <b>Intensity:</b> Moderate intensity (i.e., 11–13 RPE)                                                 | or reduce the positive effects of the perchic training   |  |  |
| that was differently modulated with the                                                                | on plasma HDL cholecterol lovels                         |  |  |
| duration of the training according to the                                                              | on plastila fibe cholesterol levels.                     |  |  |
| month of training.                                                                                     |                                                          |  |  |
| <b>Time:</b> 40 min for the first month and 50 min                                                     |                                                          |  |  |
| for the second month.                                                                                  |                                                          |  |  |
| Type: Cardiorespiratory, walking                                                                       |                                                          |  |  |

| Refers to Other Materials: No            | Outcomes Examined: Tertiles of basal plasma HDL    |
|------------------------------------------|----------------------------------------------------|
| Examine Cardiorespiratory Fitness as     | cholesterol levels.                                |
| Outcome: Yes                             |                                                    |
| Populations Analyzed: Female, <65 years, | Author-Stated Funding Source: Italian Ministry for |
| Post-menopause                           | Education                                          |

| Original Research                                                                                  | Sain D. Smith C. The offects of 10 menths of                |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <b>Citation:</b> Donnelly JE, Jacobsen DJ, Heelan KS, Seip R, Smith S. The effects of 18 months of |                                                             |
| Intermittent vs. continuous exercise on aerobi                                                     | c capacity, body weight and composition, and                |
| metabolic fitness in previously sedentary, mod                                                     | derately obese females. Int J Obe Relat Metab Disord.       |
| 2000;24(5):566–572.                                                                                |                                                             |
| Purpose: To compare the effects of 18 months of continuous vs intermittent exercise on aerobic     |                                                             |
| capacity, body                                                                                     |                                                             |
| weight and composition, and metabolic fitness                                                      | s in previously sedentary, moderately obese females.        |
| Study Design: Randomized trial                                                                     | <b>Abstract:</b> OBJECTIVES: To compare the effects of 18   |
| Location: United States                                                                            | months of continuous vs intermittent exercise on            |
| Sample: 22                                                                                         | aerobic capacity, body weight and composition, and          |
| Attrition Rate: 0.00%                                                                              | metabolic fitness in previously sedentary, moderately       |
| Sample Power: Not Reported                                                                         | obese females. DESIGN: Randomized, prospective,             |
| Intervention: Yes                                                                                  | long-term cohort study. Subjects performed                  |
| Intervention Type: Behavioral                                                                      | continuous exercise at 60-75% of maximum aerobic            |
| Intervention Length: 18 months                                                                     | capacity, 3 days per week, 30 min per session, or           |
| Exposure Measurement                                                                               | exercised intermittently using brisk walking for two, 15    |
| Other: Recorded by research assistant,                                                             | min sessions, 5 days per week. MEASURES: Aerobic            |
| distance walked, heart rate at the end of                                                          | capacity, body weight, body composition, and                |
| exercise, duration, and rating of perceived                                                        | metabolic fitness (blood pressure, lipids, glucose and      |
| exertion (RPE) after each session for the                                                          | insulin). RESULTS: Significant improvements for             |
| Continuous group (CON) and randomly two                                                            | aerobic capacity of 8% and 6% were shown for the            |
| times per week for the Intermittent group                                                          | continuous and intermittent exercise groups,                |
| (INT) to ensure compliance.                                                                        | respectively. Weight loss for the continuous exercise       |
| Measures Steps: No                                                                                 | group was significant at 2.1% from baseline weight          |
| Measures Bouts: Yes                                                                                | and the intermittent group was essentially unchanged.       |
| Examines HIIT: No                                                                                  | The continuous group showed a significant decrease in       |
| Exposure/Intervention                                                                              | percentage of body fat and fat weight while the             |
| Frequency: CON: 3 times/week; INT: 5                                                               | intermittent group did not. HDL cholesterol and insulin     |
| days/week, 2 times per day                                                                         | were significantly improved for both groups.                |
| Intensity: CON: 60–75% maximal aerobic                                                             | CONCLUSIONS: In previously sedentary, moderately            |
| capacity; INT: 50–65% heart rate reserve.                                                          | obese females, continuous or intermittent exercise          |
| Time: CON: 30 min; INT: 15 min/session (2                                                          | performed long-term may be effective for preventing         |
| times/day)                                                                                         | weight gain and for improving some measures of              |
| Type: Cardiorespiratory: Brisk walking at                                                          | metabolic fitness.                                          |
| home and twice a week supervised for the                                                           |                                                             |
| INT group, onsite supervised at all times for                                                      |                                                             |
| the CON group.                                                                                     |                                                             |
| Refers to Other Materials: No                                                                      | Outcomes Examined: Aerobic capacity: graded                 |
| Adverse Events Addressed: No                                                                       | treadmill walk test. Body fat percentage: hydrostatic       |
| Examine Cardiorespiratory Fitness as                                                               | weighing. Hip and waist circumference (Waist-to-Hip         |
| Outcome: Yes                                                                                       | Ratio). Total cholesterol, triglycerides, glucose, insulin, |
|                                                                                                    | high density lipoprotein cholesterol: blood sample,         |
|                                                                                                    | Oral glucose tolerance test, resting systolic and           |
|                                                                                                    | diastolic blood pressure. All outcomes assessed at          |
|                                                                                                    | baseline, 9, and 18 months.                                 |

| Populations Analyzed: Female, Mean age 54   | Author-Stated Funding Source: American Heart |
|---------------------------------------------|----------------------------------------------|
| years (CON), 49 years (INT), Overweight and | Association                                  |
| Obese                                       |                                              |

**Citation:** Eguchi M, Ohta M, Yamato H. The effects of single long and accumulated short bouts of exercise on cardiovascular risks in male Japanese workers: a randomized controlled study. *Ind Health*. 2013;51(6):563–571.

**Purpose:** To determine if several bouts of exercise can achieve the same effects on cardiovascular risk factors in sedentary male Japanese workers as single long bouts of exercise during a period of 20 weeks and to compare the relative effects of these exercise programs on oxidative stress.

| Study Design: Randomized trial              | Abstract: The aim of this study was to determine           |
|---------------------------------------------|------------------------------------------------------------|
| Location: Japan                             | whether accumulated short bouts of exercise can            |
| Sample: 23                                  | achieve the same cardiovascular benefits as a single       |
| Attrition Rate: 0.00%                       | long bout of exercise in sedentary male Japanese           |
| Sample Power: Not Reported                  | workers and to compare the programs' relative effects      |
| Intervention: Yes                           | on oxidative stress. Twenty-three sedentary male           |
| Intervention Type: Behavioral               | workers were randomly assigned into 2 different            |
| Intervention Length: 20 weeks               | exercise programs: a Long-bout group, which performed      |
| Exposure Measurement                        | a single period of continuous exercise (Long-bout group:   |
| Self-Reported: Self monitored exercise,     | 30?min × 1) 3 d per week, and a Short-bouts group,         |
| subjects recorded the time of day for each  | which performed 3 short bouts of exercise (Short-bouts     |
| bout.                                       | group: 10?min × 3) 3 d per week. Cardiovascular risk       |
| Measures Steps: No                          | factors, including the plasma thiobarbituric acid-reactive |
| Measures Bouts: Yes                         | substances (TBARS) level, were examined at baseline        |
| Examines HIIT: No                           | and after both 10 and 20 wk. In the Long-bout group,       |
| Exposure/Intervention                       | waist circumference and maximum oxygen uptake              |
| Frequency: Group 1: 1 session per day, 3    | (VO2max) significantly improved after 20 wk. The Short-    |
| days per week; Group 2: 3 sessions          | bouts group demonstrated significant increases in          |
| separated by at least 2 hrs per day, 3 days | VO2max after 10 weeks and in HDL-C after 20 wk.            |
| per week                                    | Plasma TBARS significantly decreased after 20 weeks in     |
| Intensity: 50% of maximal oxygen            | the Long-bout group and tended to decrease (but not        |
| consumption, ≤70% maximum heart rate        | significantly) in the Short-bouts group. These results     |
| Time: Group 1: 30 min per session; Group    | indicate that accumulated short bouts of exercise are an   |
| 2: 10 min per bout                          | effective option, especially for busy workers, for         |
| Type: Cardiorespiratory, Cycle ergometers   | incorporating exercise into one's lifestyle.               |
|                                             |                                                            |
| Refers to Other Materials: No               | Outcomes Examined: Height, weight and waist                |
| Adverse Events Addressed: No                | circumference: objectively measured. Blood pressure:       |
| Examine Cardiorespiratory Fitness as        | seated using an automatic sphygmomanometer. Blood          |
| Outcome: Yes                                | lipids (total cholesterol, HDL-C, and triglycerides):      |
|                                             | objectively measured after fasting for 12 hours.           |
|                                             | Maximum oxygen uptake: submaximal test with cycle          |
|                                             | ergometer.                                                 |
| Populations Analyzed: Male, Mean age 43     | Author-Stated Funding Source: Not Reported                 |
| years                                       |                                                            |
|                                             |                                                            |

**Citation:** Fan JX, Brown BB, Hanson H, Kowaleski-Jones L, Smith KR, Zick CD. Moderate to vigorous physical activity and weight outcomes: does every minute count? *Am J H Promot*. 2013;28(1):41–49. doi:10.4278/ajhp.120606-QUAL-286.

**Purpose:** To test if moderate-to-vigorous physical activity (MVPA) in less than the recommended  $\geq$ 10-min bouts is related to weight outcomes.

| Study Design: Cross-sectional study        | Abstract: PURPOSE: The purpose of this study was to      |
|--------------------------------------------|----------------------------------------------------------|
| Location: United States                    | test if moderate to vigorous physical activity (MVPA) in |
| Sample: 4,511                              | less than the recommended >/=10-minute bouts related     |
| Attrition Rate: 46.92                      | to weight outcomes. DESIGN: Secondary data analysis.     |
| Sample Power: Not Reported                 | SETTING: Random sample from the U.S. civilian            |
| Intervention: No                           | noninstitutionalized population included in the National |
| Exposure Measurement                       | Health and Nutrition Examination Survey (NHANES).        |
| Device-Measured: Accelerometer. four       | PARTICIPANTS: A total of 4511 adults aged 18 to 64       |
| physical activity measures were created:   | years from the 2003-2006 NHANES. METHOD: Clinically      |
| higher-intensity long bouts ( ≥10-min      | measured body mass index (BMI) and overweight/obese      |
| bouts and $\geq 2,020$ counts per minute   | status were regressed on accelerometer measures of       |
| [cpm]), higher-intensity short bouts (<10- | minutes per day in higher-intensity long bouts (>/=10    |
| min bouts and $\geq 2.020$ cpm). lower-    | minutes, >/=2020 accelerometer counts per minute         |
| intensity long bouts (≥10-min bouts and    | [cpm]), higher-intensity short bouts (<10 minutes,       |
| 760–2,019 cpm), and lower-intensity short  | >/=2020 cpm), lower-intensity long bouts (>/=10          |
| bouts (<10-min bouts and 760–2,019         | minutes, 760-2019 cpm), and lower-intensity short        |
| cpm). The average daily minutes for each   | bouts (<10 minutes, 760-2019 cpm). Socioeconomic and     |
| category were calculated across all valid  | demographic characteristics were controlled. RESULTS:    |
| days.                                      | Both higher-intensity short bouts and long bouts of PA   |
| Measures Steps: No                         | related to lower BMI and risk of overweight/obesity.     |
| Measures Bouts: Yes                        | Neither lower-intensity short bouts nor long bouts       |
| Examines HIIT: No                          | related to BMI or risk of overweight/obesity.            |
|                                            | CONCLUSION: The current >/=10-minute MVPA bouts          |
|                                            | guideline was based on health benefits other than        |
|                                            | weight outcomes. Our findings showed that for weight     |
|                                            | gain prevention, accumulated higher-intensity PA bouts   |
|                                            | of <10 minutes are highly beneficial, supporting the     |
|                                            | public health promotion message that "every minute       |
|                                            | counts."                                                 |
| Refers to Other Materials: No              | Outcomes Examined: Body Mass Index: clinically           |
| Examine Cardiorespiratory Fitness as       | measured to determine categorical measure of             |
| Outcome: No                                | overweight/obesity. Overweight and obesity risk.         |
| Populations Analyzed: Male, Female,        | Author-Stated Funding Source: National Institutes of     |
| Black or African American, Hispanic or     | Health                                                   |
| Latino, Other, 18–64 years,                |                                                          |
| Normal/Healthy Weight (BMI: 18.5-24.9),    |                                                          |
| Overweight (BMI: 25–29.9) and Obese        |                                                          |
| (BMI: 30 and above)                        |                                                          |

| Original Research                                |                                                             |
|--------------------------------------------------|-------------------------------------------------------------|
| Citation: Gay JL, Buchner DM, Schmidt MD.        | Dose-response association of physical activity with HbA1c:  |
| intensity and bout length. Prevent Med. 201      | 6;86:58-63. doi:10.1016/j.ypmed.2016.01.008.                |
| Purpose: To characterize the dose-response       | e relationship between moderate-to-vigorous physical        |
| activity (MVPA) and total physical activity (lig | ght, moderate, and vigorous) with HbA1c in adults at low,   |
| moderate, and high risks of type 2 diabetes.     |                                                             |
| Study Design: Cross-sectional study              | Abstract: OBJECTIVE: The aims of this study were to         |
| Location: United States                          | characterize the dose-response relationship between         |
| Sample: 5,302                                    | moderate-to-vigorous intensity physical activity (MVPA),    |
| Attrition Rate: 0                                | and light-intensity activity with HbA1c in adults at low,   |
| Sample Power: Not Reported                       | moderate, and high risks of type 2 diabetes, and to         |
| Intervention: No                                 | compare the relationship of short (1 to 9min) versus        |
| Exposure Measurement                             | long (10+min) bouts of MVPA with HbA1c. METHODS:            |
| Device-Measured: Accelerometer, PA               | Data from 2707 participants from the 2003-2006              |
| measured in counts/minutes and classified        | National Health And Nutrition Examination Survey were       |
| into intensity categories of sedentary,          | analyzed in 2014-2015. Type 2 diabetes risk was             |
| light, and MVPA; total minutes, total            | classified into three groups based upon age (<40years;      |
| counts, and average daily counts                 | >/=40years) and BMI (<30; >/=30). The relationship          |
| calculated and partitioned by intensity          | between HbA1c and accelerometer-based physical              |
| category: daily MVPA in long bouts (≥10          | activity variables was assessed using multiple regression   |
| min), daily MVPA counts in short bouts           | models. RESULTS: There was a curvilinear dose-response      |
| (≤10 min), proportion of activity counts in      | relationship between HbA1c with total activity and          |
| MVPA, and in short bouts of MVPA, and            | MVPA in adults at moderate or high risk for type 2          |
| light-intensity activity.                        | diabetes: higher amounts of physical activity were          |
| Measures Steps: No                               | associated with lower HbA1c. The association of physical    |
| Measures Bouts: Yes                              | activity on HbA1c was stronger at lower levels of           |
|                                                  | physical activity. There was no dose-response               |
|                                                  | relationship in adults at low risk for type 2 diabetes. The |
|                                                  | relationship between short bouts with HbA1c was             |
|                                                  | stronger than for bouts>/=10min. CONCLUSIONS: In            |
|                                                  | adults at risk for type 2 diabetes, there is a dose-        |
|                                                  | response relationship between physical activity and         |
|                                                  | HbA1c levels such that the relationship: (1) is             |
|                                                  | curvilinear; (2) is stronger when a higher percent of total |
|                                                  | activity comes from MVPA; and (3) is more potent with       |
|                                                  | short bouts of MVPA. Fractionalized physical activity of    |
|                                                  | at least moderate-intensity may contribute to long-term     |
|                                                  | glucose control.                                            |
| Refers to Other Materials: Yes                   | Outcomes Examined: Risk of type 2 diabetes: classified      |
| Examine Cardiorespiratory Fitness as             | as low, moderate, or high risk based on age and body        |
| Outcome: No                                      | mass index. Glycated hemoglobin (HbA1c).                    |
| Populations Analyzed: >18 years                  | Author-Stated Funding Source: Not Reported                  |

| Original Research                           |                                                               |
|---------------------------------------------|---------------------------------------------------------------|
| Citation: Glazer NL, Lyass A, Esliger DW, e | et al. Sustained and shorter bouts of physical activity are   |
| related to cardiovascular health. Med Sci   | Sports Exerc. 2013;45(1):109–115.                             |
| doi:10.1249/MSS.0b013e31826beae5.           |                                                               |
| Purpose: To investigate the relationship    | between moderate-to-vigorous PA (MVPA), measured in           |
| bouts ≥10 min and <10 min, and cardiova     | ascular disease risk factors in a well-characterized,         |
| community-based sample of white adults      | 5.                                                            |
| Study Design: Cross-sectional study         | Abstract: PURPOSE: Whereas greater physical activity (PA)     |
| Location: United States                     | is known to prevent cardiovascular disease (CVD), the         |
| Sample: 2,109                               | relative importance of performing PA in sustained bouts of    |
| Attrition Rate: 0.00%                       | activity versus shorter bouts of activity on CVD risk is not  |
| Sample Power: Not Reported                  | known. The objective of this study was to investigate the     |
| Intervention: No                            | relationship between moderate-to-vigorous PA (MVPA),          |
| Exposure Measurement                        | measured in bouts >/=10 and <10 min, and CVD risk factors     |
| Device-Measured: Accelerometer,             | in a well-characterized community-based sample of white       |
| MVPA defined as 1,486–5,558 counts          | adults. METHODS: We conducted a cross-sectional analysis      |
| per minute for moderate intensity and       | of 2109 participants in the Third Generation Cohort of the    |
| ≥5,559 counts for vigorous intensity,       | Framingham Heart Study (mean age = 47 yr, 55% women)          |
| corresponding to metabolic equivalent       | who underwent objective assessment of PA by                   |
| (MET) values of 3–6 for moderate            | accelerometry over 5-7 d. Total MVPA, MVPA done in bouts      |
| intensity and >6 for vigorous intensity     | >/=10 min (MVPA(10+)), and MVPA done in bouts <10 min         |
| activities; total physical activity time at | (MVPA(<10)) were calculated. MVPA exposures were              |
| each intensity level is the sum of the      | related to individual CVD risk factors, including measures of |
| minutes at a given intensity while the      | adiposity and blood lipid and glucose levels, using linear    |
| accelerometer is worn. MVPA10+              | and logistic regression. RESULTS: Total MVPA was              |
| calculated as the sum of MVPA               | significantly associated with higher HDL levels and with      |
| accumulated in bouts of at least 10 min     | lower triglycerides, BMI, waist circumference, and            |
| allowing for a 1–2 min interruption.        | Framingham risk score (P < 0.0001). MVPA(<10) showed          |
| MVPA<10 was calculated as the sum of        | similar statistically significant associations with these CVD |
| MVPA accumulated <10 min at a time.         | risk factors (P < 0.001). Compliance with national guidelines |
| Measures Steps: No                          | (>/=150 min of total MVPA) was significantly related to       |
| Measures Bouts: Yes                         | lower BMI, triglycerides, Framingham risk score, waist        |
| Examines HIIT: No                           | circumference, higher HDL, and a lower prevalence of          |
|                                             | obesity and impaired fasting glucose (P < 0.001 for all).     |
|                                             | CONCLUSIONS: Our cross-sectional observations on a large      |
|                                             | middle-age community-based sample confirm a positive          |
|                                             | association of MVPA with a healthier CVD risk factor profile  |
|                                             | and indicate that accruing PA in bouts <10 min may            |
|                                             | favorably influence cardiometabolic risk. Additional          |
|                                             | investigations are warranted to confirm our findings.         |
| Refers to Other Materials: Yes              | Outcomes Examined: Cardiovascular disease risk factors:       |
| Examine Cardiorespiratory Fitness as        | anthropometric measures (BMI, waist circumference),           |
| Outcome: No                                 | fasting glucose, triglycerides, high density lipoprotein      |
|                                             | cholesterol, systolic and diastolic blood pressure, and       |
|                                             | Framingham risk score. Binary outcomes: hypertension,         |
|                                             | obesity, impaired glucose tolerance, and diabetes.            |

| Populations Analyzed: White, Mean | Author-Stated Funding Source: National Heart, Lung and |
|-----------------------------------|--------------------------------------------------------|
| age 47 years                      | Blood Institute                                        |

**Citation:** Jakicic JM, Wing RR, Butler BA, Robertson RJ. Prescribing exercise in multiple short bouts versus one continuous bout: effects on adherence, cardiorespiratory fitness, and weight loss in overweight women. *Int J Obe Relat Metab Disord*. 1995;19(12):893–901.

**Purpose:** To investigate whether exercise adherence in obese females participating in a behavioral weight loss program is improved by prescribing daily exercise in multiple short-bouts compared to the standard recommendation of one continuous bout of exercise, and to determine whether these multiple short-bouts of daily exercise can produce significant improvements in cardiorespiratory fitness.

| Study Design: Randomized trial           | Abstract: DESIGN: Randomized controlled trial with              |
|------------------------------------------|-----------------------------------------------------------------|
| Location: Not Reported                   | subjects randomized to either a short-bout exercise group       |
| Sample: 48                               | (SB, n = 28, age = 40.4 +/- 5.9 yrs) or a long-bout exercise    |
| Attrition Rate: 14.28%                   | group (LB, n = 28, age = 40.9 +/- 7.3 yrs), with subjects       |
| Sample Power: Not Reported               | followed for a period of 20 weeks. Both groups were             |
| Intervention: Yes                        | instructed to exercise 5 days per week with exercise            |
| Intervention Type: Behavioral            | duration progressing from 20 to 40 min per day. The LB          |
| Intervention Length: 20 weeks            | group performed one exercise bout per day, whereas the          |
| Exposure Measurement                     | SB group performed multiple 10 min bouts of exercise per        |
| Self-Reported: Weekly exercise records   | day. The recommended caloric intake for all subjects was        |
| (completed by study subjects),           | 5022-6277 kJ/day (1200-1500 kcal/day), with fat reduced to      |
| calculate weekly exercise participation; | 20% of caloric intake.SUBJECTSFifty-six obese, sedentary        |
| information included type and duration   | females (BMI = 33.9 +/- 4.1 kg/m2). MEASUREMENTS:               |
| of session.                              | Exercise participation was assessed from self-reported          |
| Device-Measured: Accelerometers          | diaries and Tri-Trac Accelerometers. Cardiorespiratory          |
| randomly assign to subjects for two 5-   | fitness was assessed using a submaximal cycle ergometer         |
| day periods during the study (weeks 5–   | test. RESULTS: Exercising in multiple short-bouts per day       |
| 10 and weeks 12–18); assessed number     | improved adherence to exercise: the SB group reported           |
| of minutes of continuous energy          | exercising on a greater number of days (mean +/- s.d. =         |
| expenditure (>12.5 kJ min-1 was          | 87.3 + - 29.5 days vs $69.1 + - 28.9$ days; P < 0.05) and for a |
| calculated and the number of bouts of    | greater total duration (223.8 +/- 69.5 min/week vs 188.2 +/-    |
| 5–14.0 min, 15–24.9 min, 25–24.9 min,    | 58.4 min/week; $P = 0.08$ ) than the LB group. Predicted        |
| and ≥35 min).                            | VO2Peak increased by 5.6% and 5.0% for the LB and SB            |
| Measures Steps: No                       | groups, respectively ( $P < 0.05$ ). There was a trend for the  |
| Measures Bouts: Yes                      | weight loss to be greater in the SB group (-8.9 +/- 5.3 kg)     |
| Examines HIIT: No                        | compared to the LB group (-6.4 +/- 4.5 kg; $P < 0.07$ ).        |
| Exposure/Intervention                    | CONCLUSION: These results suggest that short-bouts of           |
| Frequency: Group 1: 1 session per day,   | exercise may enhance exercise adherence. Short-bouts of         |
| 5 days per week; Group 2: 2–4 bouts      | exercise may also enhance weight loss and produce similar       |
| per day, 5 days a week (varied by time   | changes in cardiorespiratory fitness when compared to           |
| of study).                               | iong-bouls of exercise. Thus, short-bouls of exercise may be    |
| Intensity: 70% of heart rate reserve     | preferred when prescribing exercise to obese adults.            |
| Time: Group 1: 20–40 min (varied         | objective. To investigate whether prescribing exercise in       |
| auring time of study); Group 2: 10 min   | anhance exercise adherence, cardiorespiratory fitness, and      |
| per bout                                 | weight loss in overweight adult females in a behavioral         |
| iype: Cardiorespiratory: primarily       | weight control program                                          |
| waiking prescribed.                      |                                                                 |
|                                          |                                                                 |

| Refers to Other Materials: No        | Outcomes Examined: Height and weight: objectively        |
|--------------------------------------|----------------------------------------------------------|
| Adverse Events Addressed: No         | measured. Blood pressure and heart rate: objectively     |
| Examine Cardiorespiratory Fitness as | measured after a 5 minute rest period. Cardiorespiratory |
| Outcome: Yes                         | fitness: submaximal cycle ergometer.                     |
| Populations Analyzed: Female, 25–50  | Author-Stated Funding Source: Not Reported               |
| years, Obese (BMI: 30 and above)     |                                                          |

**Citation:** Jakicic JM, Winters C, Lang W, Wing RR. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: a randomized trial. *JAMA*. 1999;282(16):1554–1560.

**Purpose:** To compare the effects of intermittent exercise with traditional continuous exercise on weight loss, adherence, and fitness, and to examine the effect of combining intermittent exercise with that using home exercise equipment.

| with that using nome exercise equipment |                                                                |
|-----------------------------------------|----------------------------------------------------------------|
| Study Design: Randomized trial          | Abstract: CONTEXT: Enhancing participation in long-term        |
| Location: United States                 | exercise may translate into improved long-term weight loss     |
| Sample: 115                             | in overweight adults. OBJECTIVES: To compare the effects of    |
| Attrition Rate: 22.29%                  | intermittent with traditional continuous exercise on weight    |
| Sample Power: Yes                       | loss, adherence, and fitness, and to examine the effect of     |
| Intervention: Yes                       | combining intermittent exercise with that using home           |
| Intervention Type: Behavioral           | exercise equipment. DESIGN: Randomized trial from              |
| Intervention Length: 18 months          | September 1996 through September 1998. SETTING AND             |
| Exposure Measurement                    | PARTICIPANTS: A total of 148 sedentary, overweight (mean       |
| Self-Reported: Subjects recorded        | [SD] body mass index, 32.8 [4.0] kg/m2) women (mean [SD]       |
| exercise performed in a log.            | age, 36.7 [5.6] years) in a university-based weight control    |
| Information used to calculate weekly    | program. INTERVENTIONS: Eighteen-month behavioral              |
| exercise.                               | weight control program with 3 groups: long-bout exercise       |
| Device-Measured: Triaxial               | (LB), multiple short-bout exercise (SB), or multiple short-    |
| accelerometer, randomly assigned to     | bout exercise with home exercise equipment (SBEQ) using a      |
| subjects to wear for 1-week period      | treadmill. MAIN OUTCOME MEASURES: Body weight, body            |
| within the initial 6 months of the      | composition, cardiorespiratory fitness, and exercise           |
| study to verify weekly exercise logs.   | adherence. RESULTS: Of 148 subjects, 115 (78%) completed       |
| Measures Steps: No                      | the 18-month program. At 18 months, mean (SD) weight loss      |
| Measures Bouts: Yes                     | was significantly greater in subjects in the SBEQ group        |
| Examines HIIT: No                       | compared with subjects in the SB group (-7.4 [7.8] kg vs -3.7  |
| Exposure/Intervention                   | [6.6] kg; P<.05). Mean (SD) weight loss for subjects in the LB |
| Frequency: Long-bout (LB): 5            | group (-5.8 [7.1] kg) was not significantly different than for |
| days/week; Short-bout (SB) and SB       | subjects in the SB or SBEQ groups. Subjects in the SBEQ        |
| with exercise equipment (SBEQ): 5       | group maintained a higher level of exercise than subjects in   |
| days/week; subjects instructed to       | both the SB and LB groups (P<.05) at 13 to 18 months of        |
| progress from 2 to 4 exercise           | treatment. All groups showed an increase in                    |
| bouts/day by week 9.                    | cardiorespiratory fitness from baseline to 18 months, with     |
| Intensity: Not Specified.               | no difference between groups. Mean (SD) weight loss at 18      |
| Time: LB: 20 min/day progressed to 40   | months was significantly greater in individuals exercising     |
| min/day; SB and SBEQ: 10-min bouts      | more than 200 min/wk throughout the intervention (-13.1        |
| (progressed from 2–4 bouts/day)         | [8.0] kg) compared with individuals exercising 150 to 200      |
| Type: Cardiorespiratory: Home-based     | min/wk (-8.5 [5.8] kg) or less than 150 min/wk (-3.5 [6.5] kg) |
| exercise; subjects instructed to choose | (P<.05). CONCLUSIONS: Compared with the LB group,              |
| a mode of exercise similar to brisk     | subjects in the SB group did not experience improved long-     |
| walking; subjects from the short-bout   | term weight loss, exercise participation, or cardiorespiratory |
| plus exercise equipment group were      | fitness. Access to home exercise equipment facilitated the     |
| also provided with motorized            | maintenance of SB, which may improve long-term weight          |
| treadmills delivered at subject's home. | loss. A dose-response relationship exists between amount of    |

|                                      | exercise and long-term weight loss in overweight adult      |
|--------------------------------------|-------------------------------------------------------------|
|                                      | women.                                                      |
| Refers to Other Materials: No        | Outcomes Examined: Body mass index: Weight and height       |
| Adverse Events Addressed: No         | using objective measures. Change in body weight. Body       |
| Examine Cardiorespiratory Fitness as | composition: Fat mass, lean body mass using dual x-ray      |
| Outcome: Yes                         | absorptiometry. Waist girth. Waist-to-hip ratio.            |
|                                      | Cardiorespiratory fitness: submaximal graded exercise test  |
|                                      | on cycle ergometer.                                         |
| Populations Analyzed: Female, 25–45  | Author-Stated Funding Source: National Institutes of Health |
| years, Overweight and Obese          |                                                             |

**Citation:** Jefferis BJ, Parsons TJ, Sartini C, et al. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. *Int J Behav Nutri Phys Act*. 2016;13:36. doi:10.1186/s12966-016-0361-2.

**Purpose:** To investigate how total volume and specific patterns of moderate to vigorous PA (MVPA), light PA (LPA), and sedentary behavior are related to adiposity and metabolic syndrome (MS).

Abstract: BACKGROUND: Older adults have low physical activity(PA) Study Design: Cross-sectional study and high sedentary behaviour(SB) levels. We investigate how total volume and specific patterns of moderate to vigorous PA(MVPA), Location: Britain light PA(LPA) and SB are related to adiposity and metabolic Sample: 1,009 syndrome (MS). Then, with reference to physical activity guidelines Attrition Rate: 39.03% which encourage MVPA in bouts > =10 min and avoiding "long" Sample Power: Not Reported sedentary bouts, we investigate whether accumulating PA and SB in Intervention: No bouts of different defined durations are differently associated with **Exposure Measurement** these outcomes. METHODS: Cross-sectional study of men (71-91 **Device-Measured:** years) recruited in UK primary care centres. Nurses made physical Accelerometer: Counts per measures (weight, height, bio-impedance, blood pressure) and took minute (CPM) threshold values fasting blood samples. 1528/3137 (49%) surviving men had >/=3 developed: <100 for sedentary valid days (>/=600 min) accelerometer data. 450 men with prebehavior (<1.5 metabolic existing chronic disease were excluded. 1009/1078 (93.6%) had equivalents [MET]),100-1,040 complete covariate data. RESULTS: Men (n = 1009, mean age for LPA (1.5-<3 MET) and 78.5(SD 4.7) years) spent 612(SD 83), 202(SD 64) and 42(SD 33) >1,040 for MVPA,(≥3 MET) minutes in SB, LIPA and MVPA respectively. Each additional 30 used to categorize the number min/day of SB and MVPA were associated with 0.32 (95% CI 0.23, of minutes/day spent in each 0.40)Kg/m(2) higher Body Mass Index (BMI) and -0.72(-0.93, -0.51) intensity level. Total daily lower BMI Kg/m(2) respectively. Patterns for waist circumference minutes of SB, LPA, and MVPA (WC), fat mass index (FMI), fasting insulin and MS were similar. and total daily minutes spent in MVPA in bouts lasting <10 min or >/=10 min duration were not bouts of LPA lasting 1–9 min associated differently with outcomes. In models adjusted for total and  $\geq 10$  min and bouts of MVPA, each minute accumulated in SB bouts lasting 1-15 min was MVPA lasting 1–9 min and  $\geq 10$ associated with lower BMI -0.012 kg/m(2), WC -0.029 cm, and OR min were measured. 0.989 for MS (all p < 0.05), and coefficients for LPA bouts 1-9 min Measures Steps: No were very similar in separate models adjusted for total MVPA. Measures Bouts: Yes Minutes accumulated in SB bouts 1-15 min and LPA bouts 1-9 min Examines HIIT: No were correlated, r = 0.62. CONCLUSIONS: Objectively measured **Sedentary Behavior** MVPA, LPA and SB were all associated with lower adiposity and Intervention: 1,224 metabolic risk. The beneficial associations of LPA are encouraging for older adults for whom initiating MVPA and maintaining bouts lasting >/=10 min may be particularly challenging. Findings that short bouts of LPA (1-9 min) and SB (1-15 min), but that all MVPA, not just MVPA accumulated in bouts >/=10 min were associated with lower adiposity and better metabolic health could help refine older adult PA guidelines. Refers to Other Materials: Yes Outcomes Examined: Body mass index. Waist circumference. Fat **Examine Cardiorespiratory** Mass Index: Bioelectrical impedance analysis measured body fat Fitness as Outcome: No percentage standardized to height.Insulin, triglycerides, HDL-C,

|                                                | glucose: blood sample. Metabolic syndrome. Systolic and diastolic blood pressure. |
|------------------------------------------------|-----------------------------------------------------------------------------------|
| <b>Populations Analyzed:</b> Male, 71–91 years | Author-Stated Funding Source: British Heart Foundation                            |

| Original Research                              |                                                            |
|------------------------------------------------|------------------------------------------------------------|
| Citation: Loprinzi PD, Cardinal BJ. Associatio | n between biologic outcomes and objectively measured       |
| physical activity accumulated in >/= 0-min b   | outs and <10-min bouts. Am J Health Promot.                |
| 2013;27(3):143–151. doi:10.4278/ajhp.1109      | 16-QUAN-348.                                               |
| Purpose: To examine the influence of bout a    | and nonbout activity on additional cardiovascular disease  |
| risk factors, including presence of metabolic  | syndrome among adults.                                     |
| Study Design: Cross-sectional study            | Abstract: PURPOSE: Examine whether nonbout physical        |
| Location: United States                        | activity (i.e., <10 minutes' duration of physical activity |
| Sample: 6,321                                  | [PA]) demonstrates a stronger association with health      |
| Attrition Rate: 0.00%                          | outcomes than bout physical activity (i.e., >/= 10         |
| Sample Power: Not Reported                     | minutes' duration). DESIGN: Cross-sectional study.         |
| Intervention: No                               | SETTING: NHANES 2003-2006. SUBJECTS: A total of 6321       |
| Exposure Measurement                           | participants ranging in age from 18 to 85 years.           |
| Device-Measured: Acccelerometer,               | MEASURES: Objectively measured PA was assessed             |
| moderate-to-vigorous PA (MVPA,) and            | using accelerometry. A variety of health outcomes (e.g.,   |
| meeting physical activity guidelines (150      | triglyceride levels) were objectively measured, including  |
| min of moderate or 75 min of vigorous-         | an assessment of metabolic syndrome. ANALYSIS:             |
| intensity PA per week) assessed for PA         | Multivariate regression analyses examined the              |
| accumulated in nonbouts (i.e., <10 min in      | association between bouts and nonbouts on each of the      |
| duration) and in bouts (i.e., ≥10 min in       | biologic health outcomes. Additionally, differences in     |
| duration).                                     | each of the biologic variables among those who met PA      |
| Measures Steps: No                             | guidelines for both approaches were evaluated.             |
| Measures Bouts: Yes                            | RESULTS: After adjustments, results were similar for       |
| Examines HIIT: No                              | both approaches. For example, the odds ratio (OR) for      |
|                                                | metabolic syndrome for nonbouts (OR, 1.89; p < .001)       |
|                                                | was similar to that for bouts (OR, 1.87; p = .002). With   |
|                                                | the exception of body mass index, similar values for the   |
|                                                | biologic variables were found between those meeting        |
|                                                | guidelines for the two PA approaches. CONCLUSION:          |
|                                                | Engaging in nonbouts, as opposed to bouts of PA, is just   |
|                                                | as strongly associated with several biologic health        |
|                                                | outcomes, suggesting that adults who perceive              |
|                                                | themselves as having little time to exercise may still be  |
|                                                | able to enhance their health by adopting an active         |
|                                                | lifestyle approach.                                        |
| Refers to Other Materials: Yes                 | Outcomes Examined: Cardiovasular disease risk factors:     |
| Examine Cardiorespiratory Fitness as           | triglyceride, low-density lipoprotein cholesterol, high-   |
| Outcome: No                                    | density lipoprotein cholesterol, total cholesterol,        |
|                                                | glucose levels, C-reactive protein, blood pressure.        |
|                                                | Anthropometric measures: waist circumference, triceps      |
|                                                | skinfold, subscapularis skinfold, height, weight, BMI.     |
|                                                | Risk of metabolic syndrome.                                |
| Populations Analyzed: 18–85 years              | Author-Stated Funding Source: Not Reported                 |

**Citation:** Murtagh EM, Boreham CA, Nevill A, Hare LG, Murphy MH. The effects of 60 minutes of brisk walking per week, accumulated in two different patterns, on cardiovascular risk. *Prevent Med*. 2005;41(1):92–97.

**Purpose:** To evaluate the effectiveness of instructing sedentary individuals to undertake 20-min brisk walks (in one continuous bout or two 10-min bouts) 3 days per week, on cardiovascular disease risk factors in previously sedentary adults.

| Study Design: Randomized trial            | Abstract: METHODS: Forty-eight subjects (31 women) mean            |
|-------------------------------------------|--------------------------------------------------------------------|
| Location: North Ireland                   | (+/-SD) age 45.7 +/- 9.4 year were randomly assigned to either     |
| Sample: 32                                | one 20-min walk (single bout), two 10-min walks (accumulated       |
| Attrition Rate: 33.33%                    | bouts) 3 days week(-1) for 12-week, or no training (control).      |
| Sample Power: Not Reported                | Oxygen consumption (VO2), heart rate (HR), and ratings of          |
| Intervention: Yes                         | perceived exertion (RPE) were measured during a 4-stage            |
| Intervention Type: Behavioral             | treadmill test at pre- and post-intervention. Body composition,    |
| Intervention Length: 12 weeks             | resting blood pressure and fasting lipoproteins were also          |
| Exposure Measurement                      | assessed. Thirty-two subjects completed the study. RESULTS:        |
| Self-Reported: Recorded speed,            | There was a significant difference between single-bout and         |
| duration, distance, and rate of           | accumulated-bout walkers in the reduction of HR at stages 2        |
| perceived exertion for each session       | and 3 of the treadmill test from pre- to post-intervention (P <    |
| in a training diary.                      | 0.05). There were no differences between groups for changes        |
| <b>Other:</b> One session each week was   | in VO2 or RPE from pre- to post-intervention. There were also      |
| supervised and walking speed and          | no changes in body mass, adiposity, blood pressure, waist and      |
| heart rate recorded.                      | hip circumferences, or lipid/lipoproteins. CONCLUSION: Brisk       |
| Measures Steps: No                        | walking for 20 min on 3 days of the week fails to alter            |
| Measures Bouts: Yes                       | cardiovascular disease risk factors in previously sedentary        |
| Exposure/Intervention                     | adults. BACKGROUND: Current ACSM guidelines recommend              |
| Frequency: Group 1: 1 session per         | that adults should exercise for 20-60 min on 3-5 days.week(-1)     |
| day. 3 times per week. Group 2: 2         | (M.L. Pollock, et al., The recommended quantity and quality of     |
| sessions per day. 3 times per week        | exercise for developing and maintaining cardiorespiratory and      |
| Intensity: Group 1: mean of 72.1%         | muscular fitness, and flexibility in healthy adults. Medicine and  |
| maximum heart rate: Group 2: mean         | Science in Sports and Exercise, 30 (6) (1998) 975-991.). For       |
| of 73.1% maximum heart rate               | individuals constrained by a busy lifestyle, an exercise           |
| <b>Time:</b> Group 1: 20 min. Group 2: 10 | prescription that delivers benefits with the minimum               |
| min per bout                              | investment of time is attractive. The purpose of the present       |
| Type: Cardiorespiratory: brisk            | study, therefore, was to examine the effect of instructing         |
| walking in treadmills                     | sedentary individuals to undertake 20 min of brisk walking, in     |
| Examines HIIT: No                         | two different patterns, 3 days per week, on fitness and other      |
|                                           | cardiovascular disease (CVD) risk factors.                         |
| Refers to Other Materials: No             | Outcomes Examined: Height and weight: objectively                  |
| Adverse Events Addressed: No              | measured. Body fat: bioelectrical impedance analysis. Waist        |
| Examine Cardiorespiratory Fitness         | and hip measurements: objectively measured. Blood pressure:        |
| as Outcome: Yes                           | validated automated device after 5 minutes of rest.                |
|                                           | Cardiovascular fitness: graded submaximal treadmill test.          |
|                                           | Blood lipids (total cholesterol, HCL-C, triglycerides, and IDL-c): |
|                                           | evaluated using standard measures.                                 |
| Populations Analyzed: Mean age 45         | Author-Stated Funding Source: Not Reported                         |
| vears                                     |                                                                    |
| <b>,</b>                                  |                                                                    |

**Original Research Citation:** Quinn TJ, Klooster JR, Kenefick RW. Two short, daily activity bouts vs. one long bout: are health and fitness improvements similar over twelve and twenty-four weeks? *J Strength Cond Res*. 2006;20(1):130–135. doi:10.1519/R-16394.1.

**Purpose:** To determine whether an incremental 12-week interval (INT) (2 x 15 min/day) exercise program yielded improvements in health-related variables that were similar to benefits resulting from a traditional 12- week, 30 min/day continuous (CON) exercise program.

| L |                                                    |                                                                                                           |
|---|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|   | Study Design: Randomized trial                     | Abstract: This study sought to determine whether a                                                        |
|   | Location: Not Reported                             | 12-week intermittent (INT; 2 x 15 min.d(-1)) exercise                                                     |
|   | Sample: 37                                         | program yielded similar improvements in                                                                   |
|   | Attrition Rate: 17.77%                             | cardiovascular health and fitness, compared with a                                                        |
|   | Sample Power: Not Reported                         | traditional 12-week, 30-minute continuous (CON; 1 x                                                       |
|   | Intervention: Yes                                  | 30 min.d(-1)) exercise program. A second purpose was                                                      |
|   | Intervention Type: Behavioral                      | to determine the effects of switching exercise                                                            |
|   | Intervention Length: 12 weeks                      | programs and continuing training for an additional 12                                                     |
|   | Exposure Measurement                               | weeks. Twenty women and 17 men, (age 48.8 +/- 9.0                                                         |
|   | Self-Reported: Exercise logs, total and            | years) were divided randomly into 2 groups: INT (n =                                                      |
|   | average time of exercise per week                  | 20) and CON (n = 17). Aerobic exercise was performed                                                      |
|   | (minutes), average exercise heart rate (HR),       | 4 d.wk(-1) for 12 weeks. Subjects then crossed over to                                                    |
|   | average rating of perceived exertion,              | the opposite training program for an additional 12                                                        |
|   | percentage of prescribed exercise time,            | weeks of training. Subjects exercised incrementally for                                                   |
|   | percentage of time in HR zone, percentage          | weeks 1-4 and training was conducted at 70-80% heart                                                      |
|   | of time above HR zone, percentage of time          | rate reserve for weeks 5-24. Both groups showed                                                           |
|   | under HR zone.                                     | comparable exercise adherence, completing 96.6 +/-                                                        |
|   | <b>Other:</b> HR recording HR values for a 24-hour | 12.2% (CON) and 96.3% +/- 17.7% (INT) of the                                                              |
|   | period. This monitoring assured subject            | prescribed exercise time. The INT walked at a lower                                                       |
|   | compliance of exercise intensity and               | percentage of Vo(2)max, maximum heart rate, systolic                                                      |
|   | duration.                                          | blood pressure, and diastolic blood pressure (p <                                                         |
|   | Measures Steps: No                                 | 0.05). Maximal oxygen consumption increased by 4.5%                                                       |
|   | Measures Bouts: Yes                                | In CON and by 8.7% In INT. Following the second 12                                                        |
|   | Exposure/Intervention                              | weeks, vo(2)max increased by 3.6 and 7.7% in CON                                                          |
|   | Frequency: Group 1 (CON): 1 session per            | and INT, respectively. Treadmill test time increased by                                                   |
|   | day, 4 days/week; Group 2 (INT): 2 bouts per       | 41 seconds in CON ( $p < 0.05$ ) and 71 seconds in INT ( $p$                                              |
|   | day, 4 days/week                                   | < 0.05) after 12 weeks of training. High-density                                                          |
|   | Intensity: Intensity was increased                 | following the first 12 weeks of training. This study                                                      |
|   | progresively over 6 weeks. Weeks 1–2: HR           | following the first 12 weeks of training. This study                                                      |
|   | zone of 50–60% of heart rate reserve (HRR).        | suggests that an INT exercise program, which is                                                           |
|   | Weeks $3-4$ : 60–70% of HRR, and weeks 5–6:        | incremental in nature, provides comparable, and in                                                        |
|   | 70–80% of HRR.                                     | some cases greater, nearly and incress benefits than<br>those expected following traditional CON exercise |
|   | lime: CON: 30 continuous minutes each              | training                                                                                                  |
|   | uay; INT: 15 min per bout                          | u anning.                                                                                                 |
|   | i ype: Cardiorespiratory: a variety of aerobic     |                                                                                                           |
|   | exercise modalities including walking,             |                                                                                                           |
|   | Jogging, cycling, cross-country skiing,            |                                                                                                           |
| I | rowing, and stair-climbing machines                |                                                                                                           |

| Refers to Other Materials: No        | Outcomes Examined: Heart rate (bpm), systolic and           |
|--------------------------------------|-------------------------------------------------------------|
| Adverse Events Addressed: No         | diastolic blood pressure (mmHg), VO2max and Hrmax.          |
| Examine Cardiorespiratory Fitness as | Body composition: body weight (kg), lean mass. Blood        |
| Outcome: Yes                         | lipids (mg/dl): total cholesterol, HDL, triglycerides, LDL, |
|                                      | ratio of total cholesterol to HDL.                          |
| Populations Analyzed: 29–65 years    | Author-Stated Funding Source: Not Reported                  |

**Citation:** Schmidt WD, Biwer CJ, Kalscheuer LK. Effects of long versus short bout exercise on fitness and weight loss in overweight females. *J Am Coll Nutr*. 2001;20(5):494–501.

**Purpose:** To compare the effect of monitored exercise program differing in daily frequency and exercise bout duration on aerobic fitness and weight loss during a period of caloric restriction.

| Study Design: Non-randomized              | Abstract: OBJE  |
|-------------------------------------------|-----------------|
| trial                                     | determine if th |
| Location: United States                   | and two 15 mi   |
| Sample: 38                                | one 30 minute   |
| Attrition Rate: 20.83%                    | weight loss. M  |
| Sample Power: Not Reported                | (body mass inc  |
| Intervention: Yes                         | at baseline and |
| Intervention Type: Behavioral             | maximal cycle   |
| Intervention Length: 12 weeks             | circumference   |
| Exposure Measurement                      | resting energy  |
| Self-Reported:                            | a self-monitor  |
| Device-Measured: Heart rate               | twelve week d   |
| monitors, measured exercise heart         | random) to on   |
| rate during session; Pedometer            | control group   |
| worn during waking hours                  | exercise group  |
| Other: Researcher recorded                | exercise group  |
| attendance and exercise heart             | accumulated e   |
| rates                                     | subjects partic |
| Measures Steps: Yes                       | heart rate rese |
| Measures Bouts: Yes                       | monitored. RE   |
| Examines HIIT: No                         | weight, body n  |
| Exposure/Intervention                     | circumference   |
| Frequency: Group 1: 1 session per         | treatment in t  |
| day, 5 days per week; Group 2: 2          | the control gro |
| sessions per day, 5 days per week,        | participation d |
| with 4 hours in between sessions;         | regard to the a |
| Group 3: 3 sessions per day, 5 days       | CONCLUSIONS     |
| per week with at least 4 hours            | exercise accun  |
| between each session; Control:            | as one continu  |
| usual activity (no exercise).             | weight loss du  |
| Intensity: Group 1–3: 75% of heart        | women.          |
| rate reserve                              |                 |
| <b>Time:</b> Group 1: 30 min; Group 2: 15 |                 |
| min per bout; Group 3: 10 min per         |                 |
| bout                                      |                 |
| Type: Cardiorespiratory, cycling          |                 |
| Refers to Other Materials: No             | Outcomes Exa    |
| Examine Cardiorespiratory Fitness         | Body fat: skinf |
| as Outcome: Yes                           | and circumfere  |
|                                           | fitness: Astran |

CTIVE: The specific aim of this study was to nree 10 minute bouts of exercise per day (3 x 10) nute bouts per day (2 x 15) were as effective as bout per day (1 x 30) for improving VO2 max and ETHODS: Overweight, female college students dex > or = 28 kg/m2) were recruited and assessed d post-treatment for aerobic fitness (Astrand test), weight, skinfold thickness (7-site), and measures (4-site). Following measurement of expenditure (REE), subjects were asked to follow ed calorie restricted diet (80% of REE) for the uration of the study and were assigned (none of four treatment groups: 1) a nonexercising (control, n = 8), 2) a 30 minutes continuous  $(1 \times 30, n = 12), 3)$  a 30 minutes accumulated  $(2 \times 15, n = 10)$  and 4) a second 30 minutes xercise group (3 x 10, n = 8). The exercising ipated in aerobic exercise training at 75% of rve three to five days per week with all exercise SULTS: VO2 max increased significantly while nass index, sum of skinfolds, and sum of s decreased significantly from baseline to posthe 1 x 30, 2 x 15 and the 3 x 10 groups, but not in oup. A tertiary finding was that exercise lid not differ among the exercising groups with verage number of days per week. : These results support the hypothesis that nulated in several short bouts has similar effects ous bout with regard to aerobic fitness and ring caloric restriction in overweight, young

**Outcomes Examined:** Height and weight: objectively measured. Body fat: skinfold thickness from seven sites. Waist, upper arm, and circumference: objectively measured. Cardiovascular fitness: Astrand maximal cycle test. Resting energy expenditure: using oxygen uptake readings from a metabolic cart.

| Populations Analyzed: Female,         | Author-Stated Funding Source: University of Wisconsin                                                                         |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Mean age 20 years, Overweight         |                                                                                                                               |
| and Obese                             |                                                                                                                               |
| Original Research                     |                                                                                                                               |
| Citation: Strath SJ, Holleman RG, Ror | nis DL, Swartz AM, Richardson CR. Objective physical activity                                                                 |
| accumulation in bouts and nonbouts    | and relation to markers of obesity in US adults. <i>Prev Chronic Dis</i> .                                                    |
| 2008;5(4):A131.                       |                                                                                                                               |
| Purpose: To compare the effects of p  | physical activity in bouts ( $\geq$ 10 min) to the effects of physical                                                        |
| activity in nonbouts (<10 min) on ma  | rkers of obesity.                                                                                                             |
| Study Design: Cross-sectional study   | Abstract: INTRODUCTION: Little is known about the relation                                                                    |
| Location: United States               | between duration of physical activity and obesity. The objective                                                              |
| Sample: 3,348                         | of this study was to compare the effects of physical activity in                                                              |
| Attrition Rate: 0.00%                 | bouts (> or = 10 minutes) to the effects of physical activity in                                                              |
| Sample Power: Not Reported            | nonbouts (<10 minutes) on markers of obesity. METHODS: We                                                                     |
| Intervention: No                      | used data from the 2003-2004 National Health and Nutrition                                                                    |
| Exposure Measurement                  | Examination Survey on body mass index, waist circumference,                                                                   |
| Device-Measured: Calculated           | and objectively determined physical activity levels for 3,250                                                                 |
| average daily minutes of moderate-    | adults aged 18 years or older. After controlling for relevant                                                                 |
| to-vigorous physical activity         | confounding variables, we performed multiple linear regression                                                                |
| (MVPA) in bouts and nonbouts; a       | analyses to predict body mass index and waist circumference                                                                   |
| bout was defined as ≥10               | for bout and nonbout minutes of moderate- to vigorous-                                                                        |
| consecutive minutes of MVPA.          | Intensity physical activity (MVPA) and for bout and honbout                                                                   |
| Bout and nonbout accelerometer        | accelerometer counts of physical activity. RESULIS: NVPA bout                                                                 |
| counts also examined.                 | minutes and WVPA honbout minutes are independently                                                                            |
| Measures Steps: No                    | associated with body mass index and waist circumference, after                                                                |
| Measures Bouts: Yes                   | controlling for confounding variables. The strength of the                                                                    |
| Examines HIIT: No                     | association between lower body mass index and MVPA bout minutes (heta $= 0.04$ , $D < 0.01$ ) was nearly 4 times greater than |
|                                       | minutes (beta = -0.04, P < .001) was nearly 4 times greater than                                                              |
|                                       | for WVPA holipout minutes (beta = -0.01, $P = .06$ ). For smaller                                                             |
|                                       | for MVDA bout minutes (bots $= 0.00$ , $B < 001$ ) than for MVDA                                                              |
|                                       | for wive A bout minutes (beta = $-0.03$ , $P < .001$ ) that for wive A                                                        |
|                                       | horibout minutes (beta = -0.03, F = .01). Bout minutes of                                                                     |
|                                       | with nonhout minutes of physical activity CONCLUSION:                                                                         |
|                                       | Accumulating MVPA in nonhouts may be a heneficial starting                                                                    |
|                                       | point for individuals to increase physical activity levels and                                                                |
|                                       | decrease body mass index and waist circumference. However                                                                     |
|                                       | bouts of physical activity lasting $>$ or = 10 minutes may be a                                                               |
|                                       | more time-efficient strategy to decrease body mass index and                                                                  |
|                                       | waist circumference.                                                                                                          |
| Refers to Other Materials: Yes        | Outcomes Examined: Body mass index: objectively measured.                                                                     |
| Examine Cardiorespiratory Fitness     | Waist circumference.                                                                                                          |
| as Outcome: No                        |                                                                                                                               |
| Populations Analyzed: >18 years       | Author-Stated Funding Source: National Institute on Aging                                                                     |
| r opulations Analyzeu. 210 years      | National Heart Lung and Blood Institute                                                                                       |
|                                       | ויימנוטהמו הכמור בעווצ מווע טוטטע ווזגוונענפ                                                                                  |

**Citation:** Vasankari V, Husu P, Vähä-Ypyä H. Association of objectively measured sedentary behaviour and physical activity with cardiovascular disease risk. *Eur J Prev Cardiol*. 2017;24(12):1311–1318. doi:10.1177/2047487317711048.

**Purpose:** To evaluate the association of accelerometer-based sedentary behavior and physical activity (PA) with the risk of cardiovascular disease.

| Study Design: Cross-sectional |
|-------------------------------|
| study                         |
| Location: Finland             |
| Sample: 1,398                 |
| Attrition Rate: 31.97%        |
| Sample Power: Not Reported    |
| Intervention: No              |
| Exposure Measurement          |

### Device-Measured:

Accelerometer, PA categorized into: moderate-to-vigorous PA (≥3.0 metabolic equivalents [METs]) and light PA (1.5-2.9 METs); examined mean daily total PA time, accumulated time, and number of different bouts (30 s−5 min, ≤10 min, ≤15 min, >5 min, >10 min, >15 min, >30 min), mean daily and weekly peak MET levels of different bout lengths, and total number of steps. Measures Steps: Yes Measures Bouts: Yes

**Abstract:** Background: We evaluated the association of accelerometer-based sedentary behaviour and physical activity with the risk of cardiovascular disease. Design: The design of this study used a population-based, cross-sectional sample. Methods: A subsample of participants in the Health 2011 Study in Finland used the tri-axial accelerometer (>/=4 days, >10 h/day, n = 1398). Sedentary behaviour (sitting, lying) and standing still in six-second epochs were recognised from raw acceleration data based on intensity and device orientation. The intensity of physical activity was calculated as one-minute moving averages of mean amplitude deviation of resultant acceleration and converted to metabolic equivalents. Metabolic equivalents were categorised to light physical activity (1.5-2.9 metabolic equivalents) and moderate-to-vigorous physical activity (moderate-to-vigorous physical activity>/=3.0 metabolic equivalents). Daily sedentary behaviour, standing still, light physical activity and moderate-to-vigorous physical activity were expressed as mean daily total time, accumulated time and number of different bouts (from 30 s to >30 min), mean daily metabolic equivalent and weekly peak metabolic equivalent levels of different bout lengths and number of breaks in sedentary behaviour. The ten-year cardiovascular disease risk was based on the Framingham risk model. Results: The mean number of daily sedentary behaviour bouts was more strongly associated with cardiovascular disease risk than mean daily total time. In the best model, smaller waist circumference, greater value of mean daily metabolic equivalent levels of one-minute bouts, higher accumulated time of moderate-to-vigorous physical activity lasting </=30 min, higher number of >5 min standing bouts and a higher number of long (>30 min) bouts of light physical activity were significantly associated with lower cardiovascular disease risk (R2 = 0.836). Conclusions: The objectively measured number and accumulated time from different bout lengths of physical activity and sedentary behaviour were associated with cardiovascular disease risk, which is considered relevant for estimating cardiovascular diseases and for devising preventive actions.

| Refers to Other Materials: Yes | Outcomes Examined: Cardiovascular disease risk:              |
|--------------------------------|--------------------------------------------------------------|
| Examine Cardiorespiratory      | Framingham risk model that estimates the 10-year absolute    |
| Fitness as Outcome: No         | risk (in %) using data collected during the health           |
|                                | examinations of the Health 2011 Study (cholesterol and blood |
|                                | pressure) or by questionnaires (medication, smoking and      |
|                                | diagnosed diabetes).                                         |
| Populations Analyzed: 18–85    | Author-Stated Funding Source: No funding source reported.    |
| years                          |                                                              |

#### **Original Research** Citation: White DK, Gabriel KP, Kim Y, Lewis CE, Sternfeld B. Do short spurts of physical activity benefit cardiovascular health? The CARDIA Study. Med Sci Sports Exerc. 2015;47(11):2353–2358. doi:10.1249/MSS.00000000000662. **Purpose:** To investigate the impact of short spurts of moderate-to-vigorous intensity physical activity (MVPA) on the development of hypertension and obesity over 5 years in a large observational prospective cohort study of cardiovascular disease risk factors among middle-aged adults. Study Design: Prospective cohort study Abstract: BACKGROUND: For optimal health benefits, Location: United States moderate- to vigorous-intensity physical activity (MVPA) is recommended in sustained bouts lasting >/=10 min. Sample: 2,076 However, short spurts of MVPA lasting <10 min are more Attrition Rate: 41.50% common in everyday life. It is unclear whether short Sample Power: Not Reported spurts of MVPA further protect against the development Intervention: No of hypertension and obesity in middle-age adults beyond **Exposure Measurement** bouted MVPA. METHODS: Objectively measured physical Device-Measured: Accelerometer, activity was collected in the Coronary Artery Risk classified minutes per day of MVPA into: Development in Young Adults study at the 20-yr (2005bouted MVPA (activity lasting ≥10 2006) examination, and blood pressure and BMI were continuous minutes) or short spurts of collected at the 20- and 25-yr (2010-2011) examinations. MVPA (activity lasting <10 continuous Time spent in MVPA was classified as either bouted minutes). For analysis, data was classified MVPA, i.e., >/=10 continuous minutes or short spurts of continuously into 10-min increments of MVPA, i.e., <10 continuous minutes. To examine the time spent in short spurts of MVPA and association of short spurts of MVPA with incident bouted MVPA and categorically into hypertension and obesity over 5 yr, we calculated risk separate tertiles of time spent in short ratios adjusted for bouted MVPA and potential spurts of MVPA (Least, Middle, Most) and confounders. RESULTS: Among 1531 and 1251 bouted MVPA (Lowest, Middle, Highest). participants without hypertension and obesity, Direct Observation: 1,374 respectively, at year 20 (age, 45.2 +/- 3.6 yr; 57.3% Measures Steps: No women; body mass index, 29.0 +/- 7.0 kg.m(-2)), 14.8% Measures Bouts: Yes and 12.1% developed hypertension and obesity by year Examines HIIT: No 25. Study participants in the highest tertile of short spurts of MVPA were 31% less likely to develop hypertension 5 yr later (risk ratio = 0.69 (0.49-0.96)) compared with those in the lowest tertile. There was no statistically significant association of short spurts of MVPA with incident obesity. CONCLUSIONS: These findings support the notion that accumulating short spurts of MVPA protects against the development of hypertension but not obesity in middle-age adults. Refers to Other Materials: Yes Outcomes Examined: Incidence of hypertension: systolic **Examine Cardiorespiratory Fitness as** (140 mmHg) and diastolic (90 mmHg) blood pressure. Outcome: No Incidence of obesity: body mass index measured objectively. Populations Analyzed: 37–55 years Author-Stated Funding Source: National Heart, Lung, and Blood Institute, National Institute on Aging

| Original Research                                                                          |                                                           |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Citation: Wolff-Hughes DL, Fitzhugh EC, Bas                                                | sett DR, Churilla JR. Total activity counts and bouted    |  |
| minutes of moderate-to-vigorous physical a                                                 | ctivity: relationships with cardiometabolic biomarkers    |  |
| using 2003–2006 NHANES. J Phys Act Health                                                  | n. 2015;12(5):694–700. doi:10.1123/jpah.2013-0463.        |  |
| Purpose: To compare the associations of ob                                                 | jectively measured moderate-to-vigorous intensity         |  |
| physical activity (MVPA), accumulated in ≥1                                                | 0-min bouts, and total activity counts (TAC) with         |  |
| biomarkers in a representative sample of U.S. adults.                                      |                                                           |  |
| Study Design: Cross-sectional study         Abstract: PURPOSE: To contrast associations of |                                                           |  |
| Location: United States                                                                    | accelerometer-measured moderate-to-vigorous physical      |  |
| Sample: 5,668                                                                              | activity (MVPA) accumulated in bouts and total activity   |  |
| Attrition Rate: 0.00%                                                                      | counts (TAC) with cardiometabolic biomarkers in U.S.      |  |
| Sample Power: Not Reported                                                                 | adults. METHODS: Using 2003-2006 National Health and      |  |
| Intervention: No                                                                           | Nutrition Examination Survey (NHANES) data, the           |  |
| Exposure Measurement                                                                       | sample was comprised of adults >/= 20 years, not          |  |
| Device-Measured: Accelerometer,                                                            | pregnant or lactating, with self-reported PA and at least |  |
| created the TAC by summing the TAC per                                                     | 4 days of $>/= 10$ hours accelerometer wear time (N =     |  |
| day and dividing by the total number of                                                    | 5668). Bouted MVPA represented the minutes/day with       |  |
| valid wear days. The threshold for MVPA                                                    | >/= 2020 counts/minute in bouts of 10 minutes or longer   |  |
| was defined as $\geq$ 2,020 counts per minute.                                             | and TAC represented the total activity counts per day.    |  |
| Bouted MVPA was assessed as minutes of                                                     | Biomarkers included: cholesterol, triglyceride,           |  |
| MVPA accumulated during bouts (>10                                                         | glycohemoglobin, plasma glucose, C-peptide, insulin, C-   |  |
| consecutive minutes, allowing for 1 to 2                                                   | reactive protein, nomocysteine, blood pressure, body      |  |
| min below the 2,020 cpm threshold).                                                        | mass index (BMI), waist circumference, and skinfolds.     |  |
| Minutes of bouted MVPA were then                                                           | Nested regression models were conducted which             |  |
| averaged across the total number of valid                                                  | regressed each biomarker on bouted NiVPA and TAC          |  |
| days.                                                                                      | simultaneously, while adjusting for relevant covariates.  |  |
| Direct Observation: 1,379                                                                  | RESULTS: Results indicated TAC was more strongly          |  |
| Measures Steps: No                                                                         | associated with 11 biomarkers: HDL-C, trigiyceride,       |  |
| Measures Bouts: Yes                                                                        | plasma glucose, c-peptide, insuin, c-reactive protein,    |  |
| Examines HIII: NO                                                                          | circumforance, tricops skinfold, and subscapular          |  |
|                                                                                            | chinefeld, Pouted MV/PA, however, only displayed          |  |
|                                                                                            | stronger associations with BML CONCLUSIONS: The total     |  |
|                                                                                            | volume of physical activity represented by TAC appears    |  |
|                                                                                            | to have stronger associations with cardiometabolic        |  |
|                                                                                            | hiomarkers than MV/PA accumulated in houts                |  |
| Pofers to Other Materials: Ves                                                             | Outcomes Examined: Systelic blood pressure, diastelic     |  |
| Adverse Events Addressed:                                                                  | blood pressure. Body mass index. Waist circumference:     |  |
| Evamine Cardiorespiratory Eitness as                                                       | tricen and subscanular skinfolds. Blood biomarkers: total |  |
| Outcome: No                                                                                | cholesterol high-density linoprotein cholesterol (HDL-C)  |  |
|                                                                                            | low-density linonrotein cholesterol (IDL-C),              |  |
|                                                                                            | glycohemoglohin nlasma glycose C-pentide insulin C-       |  |
|                                                                                            | reactive protein and homocysteine                         |  |
| Populations Analyzed: >20 years                                                            | Author-Stated Funding Source: Not Peported                |  |
| rupulations Analyzed: 220 years                                                            | Author-Stated Funding Source: Not Reported                |  |

**Citation:** Woolf-May K, Kearney EM, Owen A, Jones DW, Davison RC, Bird SR. The efficacy of accumulated short bouts versus single daily bouts of brisk walking in improving aerobic fitness and blood lipid profiles. *Health Educ Res.* 1999;14(6):803–815.

**Purpose:** To further investigate the effects of single and accumulated short bouts of walking upon aerobic capacity and blood lipid profile.

| Study Design: Randomized trial        | Abstract:                                                            |
|---------------------------------------|----------------------------------------------------------------------|
| Location: United Kingdom              | Fifty-six subjects (19 men and 37 woman) aged between 40             |
| Sample: 56                            | and 66 completed the study. They were allocated into three           |
| Attrition Rate: 29.11%                | walking groups and a control group (C). The three walking            |
| Sample Power: Not Reported            | groups performed the same total amount of walking for 18             |
| Intervention: Yes                     | weeks, but completed it in bouts of differing durations and          |
| Intervention Type: Behavioral         | frequencies. These were Long Walkers (LW; 20-40 min/bout),           |
| Intervention Length: 18 weeks         | Intermediate Walkers (IW; 10-15 min/bout) and Short Walkers          |
| Exposure Measurement                  | (SW; 5-10 min/bout); with the IW and SW performing more              |
| Self-Reported: Training diary, all    | than one bout of walking a day. Following the 18 week walking        |
| walking subjects recorded the         | programme, compared to the C group all walking groups                |
| duration and intensity of all walking | showed similar improvements in fitness as determined by a            |
| bouts; also offered optional once-    | reduction in blood lactate during a graded treadmill walking         |
| weekly supervised walking sessions.   | test (LW 1.0 mmol/l; IW 0. 8 mmol/l; SW 1.2 mmol/l; C 0.2            |
| Device-Measured: Heart rate           | mmol/l; P = 0.003) and reduction in final heart rate (LW 8           |
| monitor: 20 of the subjects were      | beats/min; IW 6 beats/min; SW 10 beats/min; C 0 beats/min; P         |
| allocated heart rate monitors and     | = 0.056). Also compared to the C group, the LW and IW groups         |
| also instructed to take manual heart  | recorded statistically significant decreases in low-density          |
| rate.                                 | lipoprotein cholesterol (LW 0.29 mmol/l; IW 0.41 mmol/l; P =         |
| Measures Steps: No                    | 0.024), whereas the control group showed a mean increase of          |
| Measures Bouts: Yes                   | 0.22 mmol/l. The LW and IW groups also showed significant            |
| Examines HIIT: No                     | reductions in apolipoprotein (apo) A-II (LW 0.05 g/l; IW 0.02        |
| Exposure/Intervention                 | g/l; SW 0.01 g/l; C 0.00 g/l; P = 0.012) with the LW recording a     |
| Frequency: Long Walkers (LW): 1       | statistically significant increase in the ratio of apo A-I/A-II (LW, |
| session per day; Intermediate         | 0.19, P = 0. 044). In conclusion, some health benefits were          |
| Walkers (IW): up to 3 bouts per day;  | achieved from all walking programmes. However, whilst the            |
| SW: up to 4 bouts per day             | changes in aerobic fitness were similar, the effects upon blood      |
| Intensity: 70–75% predicted VO2       | lipid profiles were not. The findings from this study suggest        |
| max                                   | that the LW regimen was most effective in benefiting blood           |
| <b>Time:</b> LW: 20–40 min; IW: 10–15 | lipid profile, followed by the IW regimen, with the SW being         |
| min bouts (up to 3 bouts); SW: 5–10   | least potent. Nevertheless, for the sedentary/low-active             |
| min bouts (up to 4 bouts).            | members of society, any improvement in nearth may be                 |
| Type: Cardiorespiratory: Walking in   | considered as important. Therefore accumulated bouts of              |
| an environment that best fit into     | aversise helpsvieur may be more pasily incorporated into an          |
| their lifestyle.                      | individual's lifestule then single prolonged bouts, may be           |
|                                       | advocated for boalth promotion but may not be as effective as        |
|                                       | the traditionally prescribed 20-40 min houts                         |
|                                       | the traditionally prescribed 20-40 mill bouts.                       |

| Refers to Other Materials: No     | Outcomes Examined: Triacylglycerol (TAG), total cholesterol     |
|-----------------------------------|-----------------------------------------------------------------|
| Adverse Events Addressed: No      | (TC), high-density lipoprotein cholesterol (HDL-C), low-density |
| Examine Cardiorespiratory Fitness | lipoprotein cholesterol (LDL-C). Total apolipoprotein (apo):    |
| as Outcome: Yes                   | blood samples. Aerobic fitness: graded treadmill walking test.  |
| Populations Analyzed: Male,       | Author-Stated Funding Source: Not Reported                      |
| Female, 40–66 years.              |                                                                 |

| Nutrition Evidence Library (NEL) Bias Assessment Tool<br>(BAT): Original Research                                                                     |                   |                     |                     |                |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|---------------------|----------------|----------------|
|                                                                                                                                                       | Alizadeh,<br>2013 | Asikaine<br>n, 2003 | Asikaine<br>n, 2002 | Ayabe,<br>2012 | Ayabe,<br>2013 |
| (???) = Can't Determine                                                                                                                               |                   |                     |                     |                |                |
| Inclusion/exclusion criteria similar across study groups.                                                                                             | N/A               | N/A                 | N/A                 | N/A            | N/A            |
| Strategy for recruiting or allocating participants similar across study groups.                                                                       | N/A               | N/A                 | N/A                 | N/A            | N/A            |
| Allocation sequence randomly generated.                                                                                                               | Yes               | Yes                 | Yes                 | N/A            | N/A            |
| Group allocation concealed (i.e., assignments could not be predicted).                                                                                | ???               | ???                 | ???                 | N/A            | N/A            |
| Distribution of critical confounding factors similar across<br>study groups at baseline, or analysis controlled for<br>differences between groups.    | Yes               | Yes                 | No                  | N/A            | N/A            |
| Accounted for variations in execution of study from proposed protocol or research plan.                                                               | N/A               | N/A                 | N/A                 | N/A            | Yes            |
| Adherence to study protocols similar across study groups.                                                                                             | Yes               | Yes                 | No                  | Yes            | N/A            |
| Investigators accounted for unintended concurrent<br>exposures that were differentially experienced by study<br>groups and might bias results.        | Yes               | Yes                 | No                  | N/A            | N/A            |
| Participants blinded to their intervention or exposure status.                                                                                        | No                | No                  | No                  | N/A            | N/A            |
| Investigators blinded to participants' intervention or exposure status.                                                                               | No                | No                  | No                  | N/A            | N/A            |
| Outcome assessors blinded to participants' intervention or exposure status.                                                                           | No                | No                  | No                  | Yes            | Yes            |
| Valid and reliable measures used consistently across<br>study groups to assess inclusion/exclusion criteria,<br>exposures, outcomes, and confounders. | Yes               | Yes                 | Yes                 | N/A            | Yes            |
| Length of follow-up similar across study groups.                                                                                                      | Yes               | No                  | N/A                 | N/A            | N/A            |
| In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.                                 | N/A               | N/A                 | N/A                 | N/A            | N/A            |
| Other sources of bias taken into account in design and/or<br>analysis of study through matching or other statistical<br>adjustment.                   | Yes               | Yes                 | Yes                 | Yes            | Yes            |
| Adequate statistical methods used to assess primary outcomes.                                                                                         | Yes               | Yes                 | Yes                 | Yes            | Yes            |

### Table 3. Original Research Bias Assessment Chart

| Nutrition Evidence Library (NEL) Bias Assessment Tool<br>(BAT): Original Research                                                                     |                   |                 |         |                    |                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|---------|--------------------|-----------------|
|                                                                                                                                                       | Cameron<br>, 2017 | Clarke,<br>2014 | Di 2014 | Donnelly<br>, 2000 | Eguchi,<br>2013 |
| (???) = Can't Determine                                                                                                                               |                   |                 |         |                    |                 |
| Inclusion/exclusion criteria similar across study groups.                                                                                             | N/A               | Yes             | Yes     | N/A                | N/A             |
| Strategy for recruiting or allocating participants similar across study groups.                                                                       | N/A               | Yes             | Yes     | N/A                | N/A             |
| Allocation sequence randomly generated.                                                                                                               | N/A               | N/A             | N/A     | ???                | Yes             |
| Group allocation concealed (i.e., assignments could not be predicted).                                                                                | N/A               | N/A             | N/A     | ???                | No              |
| Distribution of critical confounding factors similar across<br>study groups at baseline, or analysis controlled for<br>differences between groups.    | N/A               | ???             | Yes     | Yes                | Yes             |
| Accounted for variations in execution of study from proposed protocol or research plan.                                                               | Yes               | N/A             | N/A     | N/A                | N/A             |
| Adherence to study protocols similar across study groups.                                                                                             | N/A               | Yes             | N/A     | Yes                | No              |
| Investigators accounted for unintended concurrent<br>exposures that were differentially experienced by study<br>groups and might bias results.        | No                | Yes             | N/A     | Yes                | Yes             |
| Participants blinded to their intervention or exposure status.                                                                                        | N/A               | N/A             | No      | No                 | No              |
| Investigators blinded to participants' intervention or exposure status.                                                                               | N/A               | N/A             | No      | No                 | No              |
| Outcome assessors blinded to participants' intervention or exposure status.                                                                           | Yes               | Yes             | No      | Yes                | Yes             |
| Valid and reliable measures used consistently across<br>study groups to assess inclusion/exclusion criteria,<br>exposures, outcomes, and confounders. | Yes               | Yes             | Yes     | Yes                | No              |
| Length of follow-up similar across study groups.                                                                                                      | N/A               | Yes             | N/A     | Yes                | Yes             |
| In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.                                 | No                | N/A             | N/A     | N/A                | N/A             |
| Other sources of bias taken into account in design and/or<br>analysis of study through matching or other statistical<br>adjustment.                   | Yes               | Yes             | Yes     | Yes                | Yes             |
| Adequate statistical methods used to assess primary outcomes.                                                                                         | Yes               | Yes             | Yes     | Yes                | Yes             |

| Nutrition Evidence Library (NEL) Bias Assessment Tool<br>(BAT): Original Research                                                                     |              |              |                 |                  |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------|------------------|------------------|
|                                                                                                                                                       | Fan,<br>2013 | Gay,<br>2016 | Glazer,<br>2013 | Jakicic,<br>1995 | Jakicic,<br>1999 |
| (???) = Can't Determine                                                                                                                               |              |              |                 |                  |                  |
| Inclusion/exclusion criteria similar across study groups.                                                                                             | N/A          | N/A          | N/A             | N/A              | N/A              |
| Strategy for recruiting or allocating participants similar across study groups.                                                                       | N/A          | N/A          | N/A             | N/A              | N/A              |
| Allocation sequence randomly generated.                                                                                                               | N/A          | N/A          | N/A             | ???              | ???              |
| Group allocation concealed (i.e., assignments could not be predicted).                                                                                | N/A          | N/A          | N/A             | ???              | ???              |
| Distribution of critical confounding factors similar across<br>study groups at baseline, or analysis controlled for<br>differences between groups.    | N/A          | N/A          | N/A             | Yes              | Yes              |
| Accounted for variations in execution of study from proposed protocol or research plan.                                                               | Yes          | N/A          | Yes             | N/A              | Yes              |
| Adherence to study protocols similar across study groups.                                                                                             | N/A          | N/A          | N/A             | Yes              | Yes              |
| Investigators accounted for unintended concurrent<br>exposures that were differentially experienced by study<br>groups and might bias results.        | N/A          | Yes          | N/A             | Yes              | Yes              |
| Participants blinded to their intervention or exposure status.                                                                                        | N/A          | N/A          | N/A             | No               | No               |
| Investigators blinded to participants' intervention or exposure status.                                                                               | N/A          | N/A          | N/A             | No               | No               |
| Outcome assessors blinded to participants' intervention or exposure status.                                                                           | Yes          | Yes          | Yes             | No               | Yes              |
| Valid and reliable measures used consistently across<br>study groups to assess inclusion/exclusion criteria,<br>exposures, outcomes, and confounders. | Yes          | Yes          | Yes             | Yes              | Yes              |
| Length of follow-up similar across study groups.                                                                                                      | N/A          | N/A          | N/A             | Yes              | Yes              |
| In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.                                 | No           | N/A          | Yes             | N/A              | Yes              |
| Other sources of bias taken into account in design and/or<br>analysis of study through matching or other statistical<br>adjustment.                   | Yes          | Yes          | Yes             | Yes              | Yes              |
| Adequate statistical methods used to assess primary outcomes.                                                                                         | Yes          | Yes          | Yes             | Yes              | Yes              |

| Nutrition Evidence Library (NEL) Bias Assessment Tool<br>(BAT): Original Research                                                                     |                   |                   |                   |                |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|----------------|------------------|
|                                                                                                                                                       | Jefferis,<br>2016 | Loprinzi,<br>2013 | Murtagh<br>, 2005 | Quinn,<br>2006 | Schmidt,<br>2001 |
| (???) = Can't Determine                                                                                                                               |                   |                   |                   |                |                  |
| Inclusion/exclusion criteria similar across study groups.                                                                                             | N/A               | Yes               | N/A               | N/A            | Yes              |
| Strategy for recruiting or allocating participants similar across study groups.                                                                       | N/A               | Yes               | N/A               | N/A            | Yes              |
| Allocation sequence randomly generated.                                                                                                               | N/A               | N/A               | ???               | Yes            | N/A              |
| Group allocation concealed (i.e., assignments could not be predicted).                                                                                | N/A               | N/A               | ???               | ???            | N/A              |
| Distribution of critical confounding factors similar across<br>study groups at baseline, or analysis controlled for<br>differences between groups.    | N/A               | ???               | ???               | Yes            | Yes              |
| Accounted for variations in execution of study from proposed protocol or research plan.                                                               | Yes               | Yes               | N/A               | N/A            | N/A              |
| Adherence to study protocols similar across study groups.                                                                                             | N/A               | Yes               | Yes               | Yes            | Yes              |
| Investigators accounted for unintended concurrent exposures that were differentially experienced by study groups and might bias results.              | N/A               | Yes               | No                | No             | Yes              |
| Participants blinded to their intervention or exposure status.                                                                                        | N/A               | N/A               | No                | No             | No               |
| Investigators blinded to participants' intervention or exposure status.                                                                               | N/A               | N/A               | No                | No             | No               |
| Outcome assessors blinded to participants' intervention or exposure status.                                                                           | Yes               | Yes               | No                | No             | Yes              |
| Valid and reliable measures used consistently across<br>study groups to assess inclusion/exclusion criteria,<br>exposures, outcomes, and confounders. | Yes               | Yes               | Yes               | Yes            | Yes              |
| Length of follow-up similar across study groups.                                                                                                      | N/A               | Yes               | Yes               | Yes            | Yes              |
| In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.                                 | Yes               | N/A               | No                | No             | ???              |
| Other sources of bias taken into account in design and/or<br>analysis of study through matching or other statistical<br>adjustment.                   | Yes               | Yes               | Yes               | Yes            | Yes              |
| Adequate statistical methods used to assess primary outcomes.                                                                                         | Yes               | Yes               | Yes               | Yes            | Yes              |

| Nutrition Evidence Library (NEL) Bias Assessment Tool<br>(BAT): Original Research                                                                     |                 |                     |                |                           |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|----------------|---------------------------|------------------------|
|                                                                                                                                                       | Strath,<br>2008 | Vasankar<br>i, 2017 | White,<br>2015 | Wolff-<br>Hughes,<br>2015 | Woolf-<br>May,<br>1999 |
| (???) = Can't Determine                                                                                                                               |                 |                     |                |                           |                        |
| Inclusion/exclusion criteria similar across study groups.                                                                                             | N/A             | N/A                 | N/A            | N/A                       | N/A                    |
| Strategy for recruiting or allocating participants similar across study groups.                                                                       | N/A             | N/A                 | N/A            | N/A                       | N/A                    |
| Allocation sequence randomly generated.                                                                                                               | N/A             | N/A                 | N/A            | N/A                       | Yes                    |
| Group allocation concealed (i.e., assignments could not be predicted).                                                                                | N/A             | N/A                 | N/A            | N/A                       | ???                    |
| Distribution of critical confounding factors similar across<br>study groups at baseline, or analysis controlled for<br>differences between groups.    | N/A             | N/A                 | N/A            | N/A                       | Yes                    |
| Accounted for variations in execution of study from proposed protocol or research plan.                                                               | Yes             | Yes                 | Yes            | N/A                       | N/A                    |
| Adherence to study protocols similar across study groups.                                                                                             | N/A             | N/A                 | N/A            | N/A                       | No                     |
| Investigators accounted for unintended concurrent<br>exposures that were differentially experienced by study<br>groups and might bias results.        | N/A             | Yes                 | N/A            | Yes                       | No                     |
| Participants blinded to their intervention or exposure status.                                                                                        | N/A             | N/A                 | N/A            | N/A                       | No                     |
| Investigators blinded to participants intervention or exposure status.                                                                                | N/A             | N/A                 | N/A            | N/A                       | No                     |
| Outcome assessors blinded to participants intervention or exposure status.                                                                            | Yes             | No                  | No             | No                        | Yes                    |
| Valid and reliable measures used consistently across<br>study groups to assess inclusion/exclusion criteria,<br>exposures, outcomes, and confounders. | Yes             | Yes                 | Yes            | Yes                       | Yes                    |
| Length of follow-up similar across study groups.                                                                                                      | N/A             | Yes                 | Yes            | N/A                       | Yes                    |
| In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.                                 | N/A             | No                  | Yes            | N/A                       | Yes                    |
| Other sources of bias taken into account in design and/or<br>analysis of study through matching or other statistical<br>adjustment.                   | Yes             | Yes                 | Yes            | Yes                       | Yes                    |
| Adequate statistical methods used to assess primary outcomes.                                                                                         | Yes             | Yes                 | Yes            | Yes                       | Yes                    |

### Appendices

### **Appendix A: Analytical Framework**



### Systematic Review Questions

Q5. What is the relationship between bout duration of physical activity and health outcomes?

a. Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?

## **Population**

Adults, 18 years and older

### **Exposure**

- Physical activity (PA) performed in short bouts (10 minutes or less)
- PA exposure of at least 12 weeks

### <u>Comparison</u>

• Different PA bout durations

### **Endpoint Health Outcomes**

- All-cause and cardiovascular disease (CVD) mortality
- CVD incidence
- Type 2 Diabetes
- Cardiorespiratory fitness
- Cardio metabolic risk factors:
  - Blood Pressure
  - Blood lipids (total cholesterol, HDLcholesterol, LDLcholesterol, triglycerides)
  - o Body mass, BMI
  - Waist circumference

# Key Definitions

 Bouts: physical activity of specified intensity (or range of intensities) performed for a limited and specified period of time (e.g., 10 minutes or less). Time spent during each of these bouts can be added together to meet a specific dose of physical activity in a given day.

### **Appendix B: Final Search Strategy**

# Search Strategy: PubMed (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: PubMed; Date of Search: 5/4/2017; 233 results

| Set                                                                                | Search Strategy                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical activity                                                                  | (("Activity bouts"[tiab] OR "Daily steps"[tiab] OR "High intensity activity"[tiab] OR<br>"Interval training"[tiab] OR "Pedometer"[tiab] OR "Step count"[tiab] OR<br>"Steps/day"[tiab] OR 'high intensity interval training'[tiab]) OR (( ("High<br>intensity"[tiab] AND "training")[tiab] OR 'Interval training'[tiab] OR<br>'Pedometer'[tiab]) NOT medline[sb]) |
| Limit:<br>Publication Type<br>Include<br>(Systematic<br>Reviews/Meta-<br>Analyses) | AND<br>(systematic[sb] OR meta-analysis[pt] OR review [tiab] OR "systematic<br>review"[tiab] OR "systematic literature review"[tiab] OR metaanalysis[tiab] OR<br>"meta analysis"[tiab] OR metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled<br>analysis"[tiab] OR "pooled analyses"[tiab] OR "pooled data"[tiab])                                            |
| Limit:<br>Publication Type<br>Exclude<br>(Systematic<br>Reviews/Meta-<br>Analyses) | NOT ("comment"[Publication Type] OR "editorial"[Publication Type])                                                                                                                                                                                                                                                                                               |
| Limit: language                                                                    | AND (English[lang])                                                                                                                                                                                                                                                                                                                                              |
| Limit: Exclude<br>animal only                                                      | NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))                                                                                                                                                                                                                                                                                                   |
| Limit: Exclude<br>child only                                                       | NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT<br>(("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) AND "adult"[Mesh]))                                                                                                                                                                                                                     |

# Search Strategy: CINAHL (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: CINAHL; Date of Search: 5/4/2017; 16 unique results Terms searched in title or abstract

| Set               | Search Strategy                                                                        |
|-------------------|----------------------------------------------------------------------------------------|
| Physical activity | ("Activity bouts" OR "Daily steps" OR "High intensity activity" OR "Interval training" |
|                   | OR Pedometer OR "Step count" OR "Steps/day" OR 'high intensity interval training"      |
|                   | OR ("High intensity" AND "training"))                                                  |
| Systematic        | AND                                                                                    |
| Reviews and       | ("systematic review" OR "systematic literature review" OR review OR metaanalysis       |
| Meta-Analyses     | OR "meta analysis" OR metanalyses OR "meta analyses"" OR "pooled analysis" OR          |
|                   | "pooled analyses" OR "pooled data")                                                    |
| Limits            | English language                                                                       |
|                   | Peer reviewed                                                                          |
|                   | Exclude Medline records                                                                |
|                   | Human                                                                                  |
|                   | All years searched                                                                     |

# Search Strategy: Cochrane (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: Cochrane; Date of Search: 5/4/17; 25 Results Terms searched in title, abstract, or keywords

| Set               | Search Terms                                                                           |
|-------------------|----------------------------------------------------------------------------------------|
| Physical activity | ("Activity bouts" OR "Daily steps" OR "High intensity activity" OR "Interval training" |
|                   | OR Pedometer OR "Step count" OR "Steps/day" OR "high intensity interval                |
|                   | training" OR ("High intensity" AND training))                                          |
| Limits            | Word variations not searched                                                           |
|                   | Cochrane Reviews and Other Reviews                                                     |
|                   | All years searched                                                                     |

# Search Strategy: PubMed (Original Research)

Database: PubMed; Date of Search: 6/28/2017; 1,087 results

| Set                                                                                                                                        | Search Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical activity<br>(bouts)                                                                                                               | (("intermittent activity"[tiab] OR "intermittent exercise"[tiab] OR<br>"accumulated activity"[tiab] OR bouts[tiab]) AND ("Physical activity"[tiab] OR<br>"Exercise"[mh] OR "Exercise"[tiab]))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Outcomes<br>(Cardiovascular<br>Disease Incidence OR<br>Mortality OR<br>Cardiometabolic Risk<br>Factors OR<br>Cardiorespiratory<br>Fitness) | AND (((("Arteriosclerosis"[mh] OR "Heart failure"[mh] OR "Myocardial ischemia"[mh] OR "myocardial infarction"[mh] OR "Stroke"[mh] OR "Subarachnoid hemorrhage"[mh] OR "Intracranial hemorrhages"[mh]) OR ((Arteriosclero*[tiab] OR Atherosclero*[tiab] OR "Cerebrovascular diseases"[tiab] OR "Coronary heart disease"[tiab] OR "Heart failure"[tiab] OR "Intracerebral Hemorrhage"[tiab] OR "Intracerebral Hemorrhages"[tiab] OR "Intracerebral hemorrhage"[tiab] OR "Intracerebral Hemorrhages"[tiab] OR "Intracerebral infarction"[tiab] OR "Intracerebral Hemorrhages"[tiab] OR "Intracerebral hemorrhage"[tiab] OR "Intracerebral Hemorrhages"[tiab] OR "myocardial infarction"[tiab] OR "Subarachnoid hemorrhages"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "Ischemic heart diseases"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "incident"[tiab] OR "Death"[mh] OR "Subarachnoid hemorrhage"[tiab] OR "ischemic heart disease"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "ischemic heart diseases"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "ischemic heart disease"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "ischemic heart disease"[tiab] OR "Ischemic heart disease"[tiab] OR "ischemic heart disease"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "ischemic heart disease"[tiab] OR "Ischemic heart disease"[tiab] OR "ischemic heart disease"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "Subarachnoid hemorrhage"[tiab] OR "Ischemic heart disease"[tiab] OR "Body messure"[tiab] OR "hypotension"[tiab] OR "hypotension"[tiab] OR "hypotension"[tiab] OR "hypotension"[tiab] OR "hypotension"[tiab] OR "hypotension"[tiab] OR "h |

| Set                   | Search Strategy                                                            |
|-----------------------|----------------------------------------------------------------------------|
| Limit: Publication    | NOT ("comment" [Publication Type] OR "editorial" [Publication Type] OR     |
| Type Exclude          | "review" [Publication Type] OR systematic[sb] OR "meta-                    |
| (Original)            | analysis"[publication type] OR "systematic review"[tiab] OR "systematic    |
|                       | literature review"[tiab] OR metaanalysis[tiab] OR "meta analysis"[tiab] OR |
|                       | metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled analysis"[tiab] OR   |
|                       | "pooled analyses"[tiab] OR "pooled data"[tiab])                            |
| Limit: Language       | (English[lang])                                                            |
| Limit: Exclude animal | NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))             |
| only                  |                                                                            |
| Limit: Exclude child  | NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT             |
| only                  | (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) AND                 |
|                       | "adult"[Mesh]))                                                            |
| Limit: Date           | (("1990/01/01"[PDAT] : "2018/1/31"[PDAT])                                  |

# Search Strategy: CINAHL (Original Research)

Database: CINAHL; Date of Search: 6/28/2017; 101 unique results Terms searched in title or abstract

| Set                                                                                                                                        | Search Strategy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical activity                                                                                                                          | (("intermittent activity" OR "intermittent exercise" OR "accumulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (bouts)                                                                                                                                    | activity" OR bouts) AND ("Physical activity" OR "Exercise"))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Outcomes<br>(Cardiovascular<br>Disease Incidence OR<br>Mortality OR<br>Cardiometabolic Risk<br>Factors OR<br>Cardiorespiratory<br>Fitness) | AND<br>(((Arteriosclero* OR "Arteriosclerosis" OR Atherosclero* OR "Cerebral<br>infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR<br>"Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage"<br>OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR<br>"Intracranial hemorrhages" OR "Myocardial ischemia" OR "myocardial<br>infarction" OR "Stroke" OR "Subarachnoid hemorrhage" OR "Subarachnoid<br>hemorrhages" OR "Ischemic heart diseases" OR "Ischemic heart disease")<br>AND ("risk" OR "Ischemic heart diseases" OR "Ischemic heart disease")<br>AND ("risk" OR "risks" OR "Incidence" OR "incident" OR "Death" OR "Dying"<br>OR Fatal* OR "Mortality" OR "Postmortem")) OR ("blood pressure" OR<br>"systolic pressure" OR "diastolic pressure" OR "mean arterial" OR "bp<br>response" OR "bp decrease" OR "bp reduction" OR "normotensive" OR<br>"hypertension" OR "hypotension" OR "normotension" OR "hypertensive" OR<br>"hypotensive" OR "Body weight" OR "Body composition" OR "Body Mass<br>Index" OR "Weight status" OR "Overweight" OR "Weight Control" OR "Weight<br>gain" OR "Weight status" OR "Overweight" OR "Weight tontrol" OR "Body<br>composition" OR "Body Mass Index" OR "Waist circumference" OR "glucose<br>intolerance" OR "glucose control" OR "insulin resistance" OR "prediabetes"<br>OR "pre-diabetes" OR (diabetes AND ("type 2" OR "type II")) OR<br>"lipoproteins" OR "cholesterol" OR "triglycerides" OR "triglyceride" OR<br>"blood lipids" OR "lipoprotein") OR ("Cardiorespiratory fitness" OR "VO2<br>max" OR "maximal oxygen uptake" OR "peak oxygen uptake" OR "aerobic<br>capacity")) |
| Original Research                                                                                                                          | NOT<br>("systematic review" OR "systematic literature review" OR metaanalysis OR<br>"meta analysis" OR metanalyses OR "meta analyses"" OR "pooled analysis"<br>OR "pooled analyses" OR "pooled data")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Limits                                                                                                                                     | English language<br>Peer reviewed<br>Exclude Medline records<br>Human<br>1990-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# Search Strategy: Cochrane (Original Research)

| Database: Cochrane; Date of Search: 6/28/17; 433 Results |
|----------------------------------------------------------|
| Terms searched in title, abstract, or keywords           |

| Set                  | Search Terms                                                               |
|----------------------|----------------------------------------------------------------------------|
| Physical activity    | (("intermittent activity" OR "intermittent exercise" OR "accumulated       |
| (bouts)              | activity" OR bouts) AND ("Physical activity" OR "Exercise"))               |
| Outcomes             | AND                                                                        |
| (Cardiovascular      | (((Arteriosclero* OR "Arteriosclerosis" OR Atherosclero* OR "Cerebral      |
| Disease Incidence OR | infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR  |
| Mortality OR         | "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage"  |
| Cardiometabolic Risk | OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR             |
| Factors OR           | "Intracranial hemorrhages" OR "Myocardial ischemia" OR "myocardial         |
| Cardiorespiratory    | infarction" OR "Stroke" OR "Subarachnoid hemorrhage" OR "Subarachnoid      |
| Fitness)             | hemorrhages" OR "Ischemic heart diseases" OR "Ischemic heart disease")     |
|                      | AND ("risk" OR "risks" OR "Incidence" OR "incident" OR "Death" OR "Dying"  |
|                      | OR Fatal* OR "Mortality" OR "Postmortem")) OR ("blood pressure" OR         |
|                      | "systolic pressure" OR "diastolic pressure" OR "mean arterial" OR "bp      |
|                      | response" OR "bp decrease" OR "bp reduction" OR "normotensive" OR          |
|                      | "hypertension" OR "hypotension" OR "normotension" OR "hypertensive" OR     |
|                      | "hypotensive" OR "Body weight" OR "Body composition" OR "Body Mass         |
|                      | Index" OR "Waist circumference" OR "Body weight change" OR "Weight         |
|                      | gain OR weight status OR Overweight OR weight Control OR weight            |
|                      | amposition" OR "Pody Moss Index" OR "Weight Stability OR Body              |
|                      | intelerance" OR "glucose centrel" OR "insulin resistance" OR "prediabates" |
|                      | OP "pro diabates" OP (diabates AND ("type 2" OP "type II")) OP             |
|                      | "lipoproteins" OP "cholesterol" OP "triglycerides" OP "triglyceride" OP    |
|                      | "hlood linids" OR "linoprotein") OR ("Cardiorespiratory fitness" OR "VO2   |
|                      | max" OR "maximal oxygen untake" OR "neak oxygen untake" OR "aerobic        |
|                      | canacity"))                                                                |
| Limits               | Trials                                                                     |
|                      | Word variations will not be searched                                       |
|                      | 1990-2018                                                                  |

### **Appendix C: Literature Tree**

Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports Literature Tree





### **Appendix D: Inclusion/Exclusion Criteria**

### **Exposure Subcommittee**

### What is the relationship between bout duration of physical activity and health outcomes?

a. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?

| Category                  | Inclusion/Exclusion Criteria                                           | Notes/Rationale |
|---------------------------|------------------------------------------------------------------------|-----------------|
| Publication               | Include:                                                               |                 |
| Language                  | <ul> <li>Studies published with full text in English</li> </ul>        |                 |
| <b>Publication Status</b> | Include:                                                               |                 |
|                           | <ul> <li>Studies published in peer-reviewed journals</li> </ul>        |                 |
|                           | Reports determined to have appropriate suitability                     |                 |
|                           | and quality by PAGAC                                                   |                 |
|                           |                                                                        |                 |
|                           | Exclude:                                                               |                 |
|                           | <ul> <li>Grey literature, including unpublished data,</li> </ul>       |                 |
|                           | manuscripts, abstracts, conference proceedings                         |                 |
| Research Type             | Include:                                                               |                 |
|                           | Original research                                                      |                 |
|                           | Meta-analyses                                                          |                 |
|                           | Systematic reviews                                                     |                 |
|                           | <ul> <li>Reports determined to have appropriate suitability</li> </ul> |                 |
|                           | and quality by PAGAC                                                   |                 |
| Study Subjects            | Include:                                                               |                 |
|                           | Human subjects                                                         |                 |
| Age of Study              | Include:                                                               |                 |
| Subjects                  | <ul> <li>18 years of age and above</li> </ul>                          |                 |
|                           |                                                                        |                 |
| Health Status of          | Include:                                                               |                 |
| Study Subjects            | <ul> <li>Only studies conducted in general population</li> </ul>       |                 |
|                           | Evolution                                                              |                 |
|                           | Exclude:                                                               |                 |
|                           | • Studies on patients with existing cardiovascular                     |                 |
|                           | • Studies on high performance athletes                                 |                 |
| Comparison                | Include studies in which the comparison is:                            |                 |
| companison                | Adults exposed to different doses of physical activity                 |                 |
| Date of                   | Include:                                                               |                 |
| Publication               | • 1990 to present                                                      |                 |
| Study                     | Include:                                                               |                 |
| Design/Type of            | Original Research articles                                             |                 |
| research                  | Intervention studies                                                   |                 |
|                           | • Longitudinal                                                         |                 |
|                           | Cross-sectional studies                                                |                 |
|                           |                                                                        |                 |

| Size of Study                            | Include:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Groups                                   | • All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Intervention/                            | Include:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Exposure                                 | <ul> <li>Intervention or observational studies that use accelerometers or other objective measures to assess physical activity (PA) performed in short bouts (bouts should be spread throughout the day, but not within the same session of exercise).</li> <li>Studies with any bout (duration ideally less than 10 minutes)</li> <li>For intervention studies, the duration of the PA exposure should be at least 12 weeks</li> </ul>                                                                                                                                                                                                                                                               |  |
|                                          | <ul> <li>Exclude:</li> <li>Studies examining the metabolic response (e.g., insulin sensitivity, lipid values) to a single dose of PA or acute bouts</li> <li>Exposure measured by a single measure of physical fitness (cardiovascular fitness, strength, flexibility, walking speed in older adults): where the measure of physical activity is based only on physical fitness measures (single or combined variables)</li> <li>Studies that do not include physical activity (or the lack thereof) as the primary exposure variable or used solely as a confounding variable</li> <li>Studies of a specific therapeutic exercise (range of motion exercise, inspiratory muscle training)</li> </ul> |  |
| Outcome                                  | Include studies in which the outcome is:<br>• All-cause and CVD mortality<br>• CVD<br>• Type 2 diabetes<br>• Cardio metabolic risk factors:<br>• Blood pressure<br>• Blood lipids (total cholesterol, HDL-<br>cholesterol, LDL- cholesterol, triglycerides.<br>• Body mass, BMI<br>• Waist circumference<br>• Cardiorespiratory fitness<br>Exclude:<br>• Congenital heart disease<br>• Studies on progression of CVD                                                                                                                                                                                                                                                                                  |  |
| Multiple<br>Publications of<br>Same Data | Exclude: No restriction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

## Appendix E: Rationale for Exclusion at Abstract or Full-Text Triage for Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

| Citation                                         | Outcome | Population | Study  | Evenesure | Not ideal fit for replacement of | Other |
|--------------------------------------------------|---------|------------|--------|-----------|----------------------------------|-------|
|                                                  |         |            | Design | Exposure  | de novo search                   |       |
| Albright C, Thompson DL. The effectiveness of    |         |            |        |           |                                  |       |
| walking in preventing cardiovascular disease in  |         |            |        |           |                                  |       |
| women: a review of the current literature. J     |         |            |        | х         |                                  |       |
| Womens Health (Larchmt). 2006;15(3):271-         |         |            |        |           |                                  |       |
| 280. doi:10.1089/jwh.2006.15.271.                |         |            |        |           |                                  |       |
| Azuma K, Matsumoto H. Potential universal        |         |            |        |           |                                  |       |
| application of high-intensity interval training  |         |            |        |           |                                  |       |
| from athletes and sports lovers to patients.     |         |            | Х      |           |                                  |       |
| Keio J Med. 2017;66(2):19-24.                    |         |            |        |           |                                  |       |
| doi:10.2302/kjm.2016-0006-IR.                    |         |            |        |           |                                  |       |
| Bacon AP, Carter RE, Ogle EA, Joyner MJ.         |         |            |        |           |                                  |       |
| vozmax trainability and high intensity interval  | v       |            |        |           |                                  |       |
| training in numans: a meta-analysis. PLOS One.   | X       |            |        |           |                                  |       |
| 2013;8(9):e73182.                                |         |            |        |           |                                  |       |
| Deker C. Crey SP. Wright A. et al. The effect of |         |            |        |           |                                  |       |
| Baker G, Gray SK, Wright A, et al. The effect of |         |            |        |           |                                  |       |
| a pedometer-based community waiking              |         |            |        |           |                                  |       |
| West" on physical activity loyels and health     |         |            |        |           |                                  |       |
| outcomes: a 12 week randomized controlled        |         |            |        |           |                                  |       |
| trial Int I Behav Nutr Phys Act Sent 2008:44     |         |            |        |           |                                  |       |
| doi:10.1186/1479-5868-5-44                       |         |            |        |           |                                  |       |
| Barr-Anderson DL AuXoung M Whitt-Glover          |         |            |        |           |                                  |       |
| MC. Glenn BA. Yancev AK. Integration of short    |         |            |        |           |                                  |       |
| houts of physical activity into organizational   |         |            |        |           |                                  |       |
| routine: a systematic review of the literature.  |         |            |        | Х         | Х                                |       |
| <i>Am J Prev Med.</i> 2011;40(1):76-93.          |         |            |        |           |                                  |       |
| doi:10.1016/j.amepre.2010.09.033.                |         |            |        |           |                                  |       |
| Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS,   |         |            |        |           |                                  |       |
| Fenning AS. Effects of high-intensity interval   |         |            |        |           |                                  |       |
| training on cardiometabolic health: a            |         |            |        |           |                                  |       |
| systematic review and meta-analysis of           |         |            |        | Х         |                                  |       |
| intervention studies. Br J Sports Med.           |         |            |        |           |                                  |       |
| 2017;51(6):494-503. doi:10.1136/bjsports-        |         |            |        |           |                                  |       |
| 2015-095841.                                     |         |            |        |           |                                  |       |
| Bohannon RW. Number of pedometer-                |         |            |        |           |                                  |       |
| assessed steps taken per day by adults: a        |         |            |        |           |                                  |       |
| descriptive meta-analysis. Phys Ther.            | Х       |            |        | Х         |                                  |       |
| 2007;87(12):1642-1650.                           |         |            |        |           |                                  |       |
| doi:10.2522/ptj.20060037.                        |         |            |        |           |                                  |       |
| Bravata DM, Smith-Spangler C, Sundaram V, et     |         |            |        |           |                                  |       |
| al. Using pedometers to increase physical        |         |            |        |           |                                  |       |
| activity and improve health: a systematic        |         |            |        | Х         |                                  |       |
| review. JAMA. 2007;298(19):2296-2304.            |         |            |        |           |                                  |       |
| doi:10.1001/jama.298.19.2296.                    |         |            |        |           |                                  |       |
| Buchheit M, Laursen PB. High-intensity           |         |            |        |           |                                  |       |
| interval training, solutions to the programming  |         |            | х      |           |                                  |       |
| puzzle. Part II: anaerobic energy,               |         |            |        |           |                                  |       |
| neuromuscular load and practical applications.   |         |            |        |           |                                  |       |

| Citation                                                                                                                                                                                                                                                                                                                                                                                 | Outcome | Population | Study<br>Design | Exposure | Not ideal fit for<br>replacement of<br>de novo search | Other |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----------------|----------|-------------------------------------------------------|-------|
| <i>Sports Med</i> . 2013;43(10):927-954.<br>doi:10.1007/s40279-013-0066-5.                                                                                                                                                                                                                                                                                                               |         |            |                 |          |                                                       |       |
| Buchheit M, Laursen PB. High-intensity<br>interval training, solutions to the programming<br>puzzle: Part I: cardiopulmonary emphasis.<br><i>Sports Med</i> . 2013;43(5):313-338.<br>doi:10.1007/s40279-013-0029-x.                                                                                                                                                                      |         |            | х               |          |                                                       |       |
| Cassidy S, Thoma C, Houghton D, Trenell MI.<br>High-intensity interval training: a review of its<br>impact on glucose control and cardiometabolic<br>health. <i>Diabetologia</i> . 2017;60(1):7-23.<br>doi:10.1007/s00125-016-4106-1.                                                                                                                                                    |         |            | x               |          |                                                       |       |
| Choi BC, Pak AW, Choi JC, Choi EC. Daily step<br>goal of 10,000 steps: a literature review. <i>Clin</i><br><i>Invest Med.</i> 2007;30(3):E146-E151.                                                                                                                                                                                                                                      |         |            |                 | х        |                                                       |       |
| Eliakim A, Nemet D. Interval training and the<br>GH-IGF-I axis—a new look into an old training<br>regimen. <i>J Pediatr Endocrinol Metab</i> .<br>2012;25(9-10):815-821. doi:10.1515/jpem-<br>2012-0209.                                                                                                                                                                                 |         |            | х               |          |                                                       |       |
| Fleg JL. Salutary effects of high-intensity<br>interval training in persons with elevated<br>cardiovascular risk. <i>F1000 Research</i> . Sept<br>2016:F1000 Faculty Rev-2254.<br>doi:10.12688/f1000research.8778.1.                                                                                                                                                                     |         |            | х               |          |                                                       |       |
| Freese EC, Gist NH, Cureton KJ. Effect of prior<br>exercise on postprandial lipemia: an updated<br>quantitative review. <i>J Appl Physiol (1985)</i> .<br>2014;116(1):67-75.<br>doi:10.1152/japplphysiol.00623.2013.                                                                                                                                                                     |         |            |                 | х        |                                                       |       |
| Garcia-Hermoso A, Cerrillo-Urbina AJ, Herrera-<br>Valenzuela T, Cristi-Montero C, Saavedra JM,<br>Martínez-Vizcaíno V. Is high-intensity interval<br>training more effective on improving<br>cardiometabolic risk and aerobic capacity than<br>other forms of exercise in overweight and<br>obese youth? A meta-analysis. <i>Obes Rev.</i><br>2016;17(6):531-540. doi:10.1111/obr.12395. |         | Х          |                 |          |                                                       |       |
| Gibala MJ, Little JP, Macdonald MJ, Hawley JA.<br>Physiological adaptations to low-volume, high-<br>intensity interval training in health and<br>disease. <i>J Physiol</i> . 2012;590(5):1077-1084.<br>doi:10.1113/jphysiol.2011.224725.                                                                                                                                                 |         |            | х               |          |                                                       |       |
| Gist NH, Fedewa MV, Dishman RK, Cureton KJ.<br>Sprint interval training effects on aerobic<br>capacity: a systematic review and meta-<br>analysis. <i>Sports Med</i> . 2014;44(2):269-279.<br>doi:10.1007/s40279-013-0115-0.                                                                                                                                                             | X       |            |                 |          |                                                       |       |
| Hoffmann JJ Jr, Reed JP, Leiting K, Chiang CY,<br>Stone MH. Repeated sprints, high-intensity<br>interval training, small-sided games: theory<br>and application to field sports. <i>Int J Sports</i><br><i>Physiol Perform</i> . 2014;9(2):352-357.<br>doi:10.1123/ijspp.2013-0189.                                                                                                      |         | x          | Х               |          |                                                       |       |

| Citation                                         | Outcome | Population | Study<br>Design | Exposure | Not ideal fit for<br>replacement of<br>de novo search | Other |
|--------------------------------------------------|---------|------------|-----------------|----------|-------------------------------------------------------|-------|
| Hussain SR, Macaluso A, Pearson SJ. High-        |         |            |                 |          |                                                       |       |
| intensity interval training versus moderate-     |         |            |                 |          |                                                       |       |
| intensity continuous training in the             |         |            | v               |          |                                                       |       |
| prevention/management of cardiovascular          |         |            | ~               |          |                                                       |       |
| disease. Cardiol Rev. 2016;24(6):273-281.        |         |            |                 |          |                                                       |       |
| doi:10.1097/CRD.000000000000124.                 |         |            |                 |          |                                                       |       |
| Hwang CL, Wu YT, Chou CH. Effect of aerobic      |         |            |                 |          |                                                       |       |
| interval training on exercise capacity and       |         |            |                 |          |                                                       |       |
| metabolic risk factors in people with            |         | V          |                 |          |                                                       |       |
| cardiometabolic disorders: a meta-analysis. J    |         | X          |                 |          |                                                       |       |
| Cardiopulm Rehabil Prev. 2011;31(6):378-385.     |         |            |                 |          |                                                       |       |
| doi:10.1097/HCR.0b013e31822f16cb.                |         |            |                 |          |                                                       |       |
| Jelleyman C, Yates T, O'Donovan G, et al. The    |         |            |                 |          |                                                       |       |
| effects of high-intensity interval training on   |         |            |                 |          |                                                       |       |
| glucose regulation and insulin resistance: a     |         |            |                 | х        |                                                       |       |
| meta-analysis. Obes Rev. 2015;16(11):942-961.    |         |            |                 |          |                                                       |       |
| doi:10.1111/obr.12317.                           |         |            |                 |          |                                                       |       |
| Kang M, Marshall SJ, Barreira TV, Lee JO. Effect |         |            |                 |          |                                                       |       |
| of pedometer-based physical activity             |         |            |                 |          |                                                       |       |
| interventions: a meta-analysis. Res Q Exerc      |         |            |                 | х        |                                                       |       |
| Sport. 2009;80(3):648-655.                       |         |            |                 |          |                                                       |       |
| doi:10.1080/02701367.2009.10599604.              |         |            |                 |          |                                                       |       |
| Karlsen T, Aamot IL, Haykowsky M, Rognmo Ø.      |         |            |                 |          |                                                       |       |
| High intensity interval training for maximizing  |         |            |                 |          |                                                       |       |
| health outcomes. Prog Cardiovasc Dis.            |         |            | Х               |          |                                                       |       |
| 2017;60(1):67-77.                                |         |            |                 |          |                                                       |       |
| doi:10.1016/j.pcad.2017.03.006.                  |         |            |                 |          |                                                       |       |
| Kessler HS, Sisson SB, Short KR. The potential   |         |            |                 |          |                                                       |       |
| for high-intensity interval training to reduce   |         |            |                 |          |                                                       |       |
| cardiometabolic disease risk. Sports Med.        |         |            |                 | Х        |                                                       |       |
| 2012;42(6):489-509. doi:10.2165/11630910-        |         |            |                 |          |                                                       |       |
| 00000000-00000.                                  |         |            |                 |          |                                                       |       |
| Kolmos M, Krawcyk RS, Kruuse C. Effect of        |         |            |                 |          |                                                       |       |
| high-intensity training on endothelial function  |         |            |                 |          |                                                       |       |
| in patients with cardiovascular and              |         |            |                 |          |                                                       |       |
| cerebrovascular disease: a systematic review.    |         | Х          |                 |          |                                                       |       |
| SAGE Open Med. Dec                               |         |            |                 |          |                                                       |       |
| 2016:2050312116682253.                           |         |            |                 |          |                                                       |       |
| doi:10.1177/2050312116682253.                    |         |            |                 |          |                                                       |       |
| MacInnis MJ, Gibala MJ. Physiological            |         |            |                 |          |                                                       |       |
| adaptations to interval training and the role of |         |            | x               |          |                                                       |       |
| exercise intensity. J Physiol. 2017;595(9):2915- |         |            | ~               |          |                                                       |       |
| 2930. doi:10.1113/JP273196.                      |         |            |                 |          |                                                       |       |
| Meyer J, Morrison J, Zuniga J. The benefits and  |         |            |                 |          |                                                       |       |
| risks of CrossFit: a systematic review.          |         |            |                 |          |                                                       |       |
| Workplace Health Saf. March                      | Х       |            |                 |          |                                                       |       |
| 201/:2165079916685568.                           |         |            |                 |          |                                                       |       |
| doi:2165079916685568.                            |         |            |                 |          |                                                       |       |
| Milanovic Z, Sporis G, Weston M. Effectiveness   |         |            |                 |          |                                                       |       |
| of nigh-intensity interval training (HIT) and    |         |            |                 |          |                                                       |       |
| continuous endurance training for VO2max         | Х       |            |                 |          |                                                       |       |
| improvements: a systematic review and meta-      |         |            |                 |          |                                                       |       |
| analysis of controlled trials. Sports Med.       | L       |            | l               |          |                                                       |       |

| Citation                                                                                                                                                                                                                                                                                                           | Outcome | Population | Study<br>Design | Exposure | Not ideal fit for<br>replacement of<br>de novo search | Other |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----------------|----------|-------------------------------------------------------|-------|
| 2015;45(10):1469-1481. doi:10.1007/s40279-<br>015-0365-0.                                                                                                                                                                                                                                                          |         |            |                 |          |                                                       |       |
| Murtagh EM, Murphy MH, Boone-Heinonen J.<br>Walking: the first steps in cardiovascular<br>disease prevention. <i>Curr Opin Cardiol</i> .<br>2010;25(5):490-496.<br>doi:10.1097/HCO.0b013e32833ce972.                                                                                                               |         |            | x               | x        |                                                       |       |
| Oliveros MJ, Gaete-Mahn MC, Lanas F,<br>Martinez-Zapata MJ, Seron P. Interval training<br>exercise for hypertension. <i>Cochrane Database</i><br><i>Syst Rev</i> . Jan 2017:CD012511.<br>doi:10.1002/14651858.CD012511.                                                                                            |         |            | x               |          |                                                       |       |
| Ramos JS, Dalleck LC, Tjonna AE, Beetham KS,<br>Coombes JS. The impact of high-intensity<br>interval training versus moderate-intensity<br>continuous training on vascular function: a<br>systematic review and meta-analysis. <i>Sports</i><br><i>Med</i> . 2015;45(5):679-692.<br>doi:10.1007/s40279-015-0321-z. |         | х          |                 |          |                                                       |       |
| Regnaux JP, Lefevre-Colau MM, Trinquart L, et<br>al. High-intensity versus low-intensity physical<br>activity or exercise in people with hip or knee<br>osteoarthritis. <i>Cochrane Database Syst Rev</i> .<br>2015;(10):CD010203.<br>doi:10.1002/14651858.CD010203.                                               |         | x          |                 |          |                                                       |       |
| Shiraev T, Barciay G. Evidence based<br>exercise— clinical benefits of high intensity<br>interval training. <i>Aust Fam Physician</i> .<br>2012;41(12):960-962.                                                                                                                                                    |         | Х          | х               |          |                                                       |       |
| Sloth M, Sloth D, Overgaard K, Dalgas U.<br>Effects of sprint interval training on VO2max<br>and aerobic exercise performance: a<br>systematic review and meta-analysis. <i>Scand J</i><br><i>Med Sci Sports</i> . 2013;23(6):e341-e352.<br>doi:10.1111/sms.12092.                                                 |         |            |                 |          | х                                                     |       |
| Soares FH, de Sousa MB. Different types of<br>physical activity on inflammatory biomarkers<br>in women with or without metabolic<br>disorders: a systematic review. <i>Women</i><br><i>Health</i> . 2013;53(3):298-316.<br>doi:10.1080/03630242.2013.782940.                                                       | х       |            |                 |          |                                                       |       |
| Tudor-Locke C, Bassett DR Jr. How many<br>steps/day are enough? Preliminary pedometer<br>indices for public health. <i>Sports Med</i> .<br>2004;34(1):1-8.                                                                                                                                                         |         |            | х               |          |                                                       |       |
| Tudor-Locke C, Craig CL, Aoyagi Y, et al. How<br>many steps/day are enough? For older adults<br>and special populations. <i>Int J Behav Nutr Phys</i><br><i>Act</i> . July 2011:80. doi:10.1186/1479-5868-8-<br>80.                                                                                                |         |            |                 | х        |                                                       |       |
| Tudor-Locke C, Craig CL, Beets MW, et al. How<br>many steps/day are enough? For children and<br>adolescents. <i>Int J Behav Nutr Phys Act.</i> July<br>2011:78. doi:10.1186/1479-5868-8-78.                                                                                                                        |         | Х          |                 | Х        |                                                       |       |

| Citation                                                                                                                                                                                                                                                                                                        | Outcome | Population | Study<br>Design | Exposure | Not ideal fit for<br>replacement of<br>de novo search | Other |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-----------------|----------|-------------------------------------------------------|-------|
| Tudor-Locke C, Craig CL, Brown WJ, et al. How<br>many steps/day are enough? For adults. <i>Int J</i><br><i>Behav Nutr Phys Act</i> . July 2011:79.<br>doi:10.1186/1479-5868-8-79.                                                                                                                               |         |            |                 | x        |                                                       |       |
| Tudor-Locke C, Craig CL, Thyfault JP, Spence<br>JC. A step-defined sedentary lifestyle index:<br><5000 steps/day. <i>Appl Physiol Nutr Metab</i> .<br>2013;38(2):100-114. doi:10.1139/apnm-2012-<br>0235.                                                                                                       |         |            | x               | x        |                                                       |       |
| Tudor-Locke C, Hart TL, Washington TL.<br>Expected values for pedometer-determined<br>physical activity in older populations. <i>Int J</i><br><i>Behav Nutr Phys Act</i> . Aug 2009:59.<br>doi:10.1186/1479-5868-6-59.                                                                                          | х       |            |                 |          |                                                       |       |
| Vollaard NB, Metcalfe RS, Williams S. Effect of<br>number of sprints in a SIT session on change in<br>VO2max: a meta-analysis. <i>Med Sci Sports</i><br><i>Exerc</i> . 2017;49(6):1147-1156.<br>doi:10.1249/MSS.00000000001204.                                                                                 | Х       |            |                 |          |                                                       |       |
| Weston KS, Wisloff U, Coombes JS. High-<br>intensity interval training in patients with<br>lifestyle-induced cardiometabolic disease: a<br>systematic review and meta-analysis. <i>Br J</i><br><i>Sports Med.</i> 2014;48(16):1227-1234.<br>doi:10.1136/bjsports-2013-092576.                                   |         | х          |                 |          |                                                       |       |
| Weston M, Taylor KL, Batterham AM, Hopkins<br>WG. Effects of low-volume high-intensity<br>interval training (HIT) on fitness in adults: a<br>meta-analysis of controlled and non-controlled<br>trials. <i>Sports Med</i> . 2014;44(7):1005-1017.<br>doi:10.1007/s40279-014-0180-z.                              | Х       |            |                 |          |                                                       |       |
| Wewege M, van den Berg R, Ward RE, Keech<br>A. The effects of high-intensity interval<br>training vs. moderate-intensity continuous<br>training on body composition in overweight<br>and obese adults: a systematic review and<br>meta-analysis. <i>Obes Rev.</i> 2017;18(6):635-646.<br>doi:10.1111/obr.12532. |         | х          |                 |          |                                                       |       |
| Wisloff U, Ellingsen O, Kemi OJ. High-intensity<br>interval training to maximize cardiac benefits<br>of exercise training? <i>Exerc Sport Sci Rev</i> .<br>2009;37(3):139-146.<br>doi:10.1097/JES.0b013e3181aa65fc.                                                                                             |         |            | x               |          |                                                       |       |

### Rationale for Exclusion at Abstract or Full-Text Triage for Original Research

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

| Citation                                             | Outcome | Population | Study<br>Design | Exposure | Other |
|------------------------------------------------------|---------|------------|-----------------|----------|-------|
| Dugas LR, Kliethermes S, Plange-Rhule J, et al.      |         |            |                 |          |       |
| Accelerometer-measured physical activity is not      |         |            |                 |          |       |
| associated with two-year weight change in            |         |            |                 | x        |       |
| African-origin adults from five diverse              |         |            |                 | ~        |       |
| populations. Marusic A, ed. PeerJ. 2017;5:e2902.     |         |            |                 |          |       |
| doi:10.7717/peerj.2902.                              |         |            |                 |          |       |
| Jacobsen DJ, Donnelly JE, Snyder-Heelan K,           |         |            |                 |          |       |
| Livingston K. Adherence and attrition with           |         |            |                 |          |       |
| intermittent and continuous exercise in              | х       |            |                 |          |       |
| overweight women. Int J Sports                       |         |            |                 |          |       |
| <i>Med.</i> 2003;24(06):459-464. doi:10.1055/s-2003- |         |            |                 |          |       |
| 41177.                                               |         |            |                 |          |       |
| Snyder KA, Donnelly JE, Jabobsen DJ, Hertner G,      |         |            |                 |          |       |
| Jakicic JM. The effects of long-term, moderate       |         |            |                 |          |       |
| intensity, intermittent exercise on aerobic          |         |            |                 |          | х     |
| capacity, body composition, blood lipids, insulin    |         |            |                 |          |       |
| and glucose in overweight females. Int J Obes        |         |            |                 |          |       |
| Relat Metab Dis. 1997;21(12):1180-1189.              |         |            |                 |          |       |
| Tucker JM, Welk GJ, Beyler NK, Kim Y.                |         |            |                 |          |       |
| Associations between physical activity and           |         |            |                 |          |       |
| metabolic syndrome: comparison between self-         |         |            |                 | x        |       |
| report and accelerometry. Am J Health Promot.        |         |            |                 |          |       |
| 2016;30(3):155-162. doi:10.4278/ajhp.121127-         |         |            |                 |          |       |
| QUAN-576.                                            |         |            |                 |          |       |

### References

1. Alizadeh Z, Kordi R, Rostami M, Mansournia MA, Hosseinzadeh-Attar SMJ, Fallah J. Comparison between the effects of continuous and intermittent aerobic exercise on weight loss and body fat percentage in overweight and obese women: a randomized controlled trial. *Int J Prev Med*. 2013;4(8):881–888.

2. Asikainen TM, Miilunpalo S, Kukkonen-Harjula K, et al. Walking trials in postmenopausal women: effect of low doses of exercise and exercise fractionization on coronary risk factors. *Scand J Med Sci Sports*. 2003;13(5):284–292.

3. Asikainen TM, Miilunpalo S, Oja P, et al. Walking trials in postmenopausal women: effect of one vs two daily bouts on aerobic fitness. *Scand J Med Sci Sports*. 2002;12(2):99–105.

4. Donnelly JE, Jacobsen DJ, Heelan KS, Seip R, Smith S. The effects of 18 months of intermittent vs continuous exercise on aerobic capacity, body weight and composition, and metabolic fitness in previously sedentary, moderately obese females. *Int J Obes Relat Metab Dis*. 2000;4(5):566–572.

5. Eguchi M, Ohta M, Yamato H. The effects of single long and accumulated short bouts of exercise on cardiovascular risks in male Japanese workers: a randomized controlled study. *Ind Health*. 2013;51(6):563–571.

6. Jakicic JM, Wing RR, Butler BA, Robertson RJ. Prescribing exercise in multiple short bouts versus one continuous bout: effects on adherence, cardiorespiratory fitness, and weight loss in overweight women. *Int J Obes Relat Metab Disord*. 1995;19(12):893–901.

7. Jakicic JM, Winters C, Lang W, Wing RR. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: a randomized trial. *JAMA*. 1999;282(16):1554–1560.

8. Murtagh EM, Boreham CA, Nevill A, Hare LG, Murphy MH. The effects of 60 minutes of brisk walking per week, accumulated in two different patterns, on cardiovascular risk. *Prev Med*. 2005;41(1):92–97. doi:10.1016/j.ypmed.2004.10.008.

9. Quinn TJ, Klooster JR, Kenefick RW. Two short, daily activity bouts vs. *one long bout: are health and fitness improvements similar over twelve and twenty-four weeks? J Strength Cond Res*. 2006;20(1):130–135. doi:10.1519/R-16394.1.

10. Schmidt WD, Biwer CJ, Kalscheuer LK. Effects of long versus short bout exercise on fitness and weight loss in overweight females. *J Am Coll Nutr*. 2001;20(5):494–501.

11. Woolf-May K, Kearney EM, Owen A, Jones DW, Davison RC, Bird SR. The efficacy of accumulated short bouts versus single daily bouts of brisk walking in improving aerobic fitness and blood lipid profiles. *Health Educ Res.* 1999;14(6):803–815.

12. Di Blasio A, Bucci I, Ripari P, et al. Lifestyle and high density lipoprotein cholesterol in postmenopause. *Climacteric*. 2014;17(1):37–47. doi:10.3109/13697137.2012.758700.

13. White DK, Gabriel KP, Kim Y, Lewis CE, Sternfeld B. Do short spurts of physical activity benefit cardiovascular health? The CARDIA Study. *Med Science Sports Exerc*. 2015;47(11):2353–2358. doi:10.1249/MSS.00000000000662.

14. Ayabe M, Kumahara H, Morimura K, Ishii K, Sakane N, Tanaka H. Very short bouts of non-exercise physical activity associated with metabolic syndrome under free-living conditions in Japanese female adults. *Eur J Appl Physiol*. 2012;112(10):3525–3532. doi:10.1007/s00421-012-2342-8.

15. Ayabe M, Kumahara H, Morimura K, Sakane N, Ishii K, Tanaka H. Accumulation of short bouts of nonexercise daily physical activity is associated with lower visceral fat in Japanese female adults. *Int J Sports Med*. 2013;34(1):62–67. doi:10.1055/s-0032-1314814.

16. Cameron N, Godino J, Nichols JF, Wing D, Hill L, Patrick K. Associations between physical activity and BMI, body fatness, and visceral adiposity in overweight or obese Latino and non-Latino adults. *Int J Obes (Lond)*. 2017;41(6):873–877. doi:10.1038/ijo.2017.49.

17. Clarke J, Janssen I. Sporadic and bouted physical activity and the metabolic syndrome in adults. *Med Sci Sports Exerc*. 2014;46(1):76–83. doi:10.1249/MSS.0b013e31829f83a0.

18. Fan JX, Brown BB, Hanson H, Kowaleski-Jones L, Smith KR, Zick CD. Moderate to vigorous physical activity and weight outcomes: does every minute count? *Am J Health Promot*. 2013;28(1):41–49. doi:10.4278/ajhp.120606-QUAL-286.

19. Gay JL, Buchner DM, Schmidt MD. Dose-response association of physical activity with HbA1c: intensity and bout length. *Prev Med*. 2016;86:58–63. doi:10.1016/j.ypmed.2016.01.008.

20. Glazer NL, Lyass A, Esliger DW, et al. Sustained and shorter bouts of physical activity are related to cardiovascular health. *Med Sci Sports Exerc*. 2013;45(1):109–115. doi:10.1249/MSS.0b013e31826beae5.

21. Jefferis BJ, Parsons TJ, Sartini C, et al. Does duration of physical activity bouts matter for adiposity and metabolic syndrome? A cross-sectional study of older British men. *Int J Behav Nutr Phys Act*. 2016;13:36. doi:10.1186/s12966-016-0361-2.

22. Loprinzi PD, Cardinal BJ. Association between biologic outcomes and objectively measured physical activity accumulated in >/=10-minute bouts and <10-minute bouts. *Am J Health Promot*. 2013;27(3):143–151. doi:10.4278/ajhp.110916-QUAN-348.

23. Strath SJ, Holleman RG, Ronis DL, Swartz AM, Richardson CR. Objective physical activity accumulation in bouts and nonbouts and relation to markers of obesity in US adults. *Prev Chronic Dis*. 2008;5(4):A131.

24. Vasankari V, Husu P, Vaha-Ypya H, et al. Association of objectively measured sedentary behaviour and physical activity with cardiovascular disease risk. *Eur J Prev Cardiol*. 2017;24(12):1311–1318. doi:10.1177/2047487317711048.

25. Wolff-Hughes DL, Fitzhugh EC, Bassett DR, Churilla JR. Total activity counts and bouted minutes of moderate-to-vigorous physical activity: relationships with cardiometabolic biomarkers using 2003–2006 NHANES. *J Phys Act Health*. 2015;12(5):694–700. doi:10.1123/jpah.2013-0463.