Evidence Portfolio – Sedentary Subcommittee, Question 1

Q1. What is the relationship between sedentary behavior and all-cause mortality?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?
- c. Is the relationship independent of levels of light, moderate, or vigorous physical activity?
- d. Is there evidence that bouts or breaks in sedentary behavior change the relationship between sedentary behavior and all-cause mortality?

Sources of Evidence: Existing Systematic Reviews, Meta-Analyses, and Original Research

Conclusion Statements and Grades

Strong evidence demonstrates a significant relationship between greater time spent in sedentary behavior and higher all-cause mortality rates. **PAGAC Grade: Strong.**

Strong evidence demonstrates the existence of a direct, curvilinear dose-response relationship between sedentary behavior and all-cause mortality, with an increasing slope at higher amounts of sedentary behavior. **PAGAC Grade: Strong.**

Limited evidence suggests that the relationship between sedentary behavior and all-cause mortality does not vary by age, sex/ethnicity, or weight status. **PAGAC Grade: Limited.**

Insufficient evidence is available to determine whether the relationship between sedentary behavior and all-cause mortality varies by socioeconomic status. **PAGAC Grade: Not assignable.**

Strong evidence demonstrates that the relationship between sedentary behavior and all-cause mortality varies by amount of moderate-to-vigorous physical activity. **PAGAC Grade: Strong.**

Insufficient evidence is available to determine whether bouts or breaks in sedentary behavior are important factors in the relationship between sedentary behavior and all-cause mortality. **PAGAC** Grade: Not assignable.

Description of the Evidence

An initial search for systematic reviews, meta-analyses, pooled analyses, and reports did not identify sufficient literature to fully answer the research question as determined by the Sedentary Subcommittee. A supplementary search for original research was conducted to capture the most recent literature.

Existing Systematic Reviews and Meta-Analyses

Overview

A total of 9 existing reviews were included: 6 meta-analyses¹⁻⁶ and 3 systematic reviews.⁷⁻⁹ The reviews were published from 2011 to 2016.

The meta-analyses included a range of 3 to 16 studies that addressed all-cause mortality. All metaanalyses covered an extensive timeframe: from inception to one year before publication or during the year of publication, $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$ from 1970 to March 2011, $\frac{4}{4}$ and from 1989 to January 2013.²

The systematic reviews included a range of 3 to 6 studies that addressed all-cause mortality. Reviews covered the following timeframes: from inception to one year before publication,^Z from 1989 to February 2010,⁸ and from 1996 to January 2011.⁹

Exposures

All of the included reviews examined sedentary behavior. The majority of the reviews used a comprehensive definition of sedentary behavior that included any activities requiring low levels of energy expenditure (\leq 1.5 metabolic equivalents), such as sitting time, television viewing, or screen time.^{1-3, 6-9} Two reviews examined television viewing or screen time only.^{4, 5}

Outcomes

All included reviews addressed all-cause mortality as an outcome.

Original Research

Overview

Twenty-seven original research studies were included as sources of evidence.¹⁰⁻³⁶ All of the included studies were prospective cohort studies. The studies were published between 2014 and 2017.

The majority of the studies (n=16) were conducted in the United States, $\frac{11-15}{18}$, $\frac{22-25}{27}$, $\frac{28}{28}$, $\frac{30-32}{35}$, $\frac{35}{3}$ were in the United Kingdom, $\frac{17}{29}$, $\frac{36}{3}$ were in Norway, $\frac{16}{21}$ were in Australia, $\frac{10}{33}$ was in Denmark, $\frac{34}{3}$ was in Japan, $\frac{19}{1}$ was in the Netherlands, $\frac{20}{20}$ and the remaining study was conducted in Spain. $\frac{26}{10}$ The analytic sample size ranged from 1,839 to 423,659.

Exposures

The majority (n=15) of the studies used self-reported data to measure sedentary behavior. Of these studies, 8 assessed participants' sitting per day, ^{10, 16, 17, 21, 22, 26, 28, 35} 2 studies^{18, 32} assessed television viewing time, 2 studies^{19, 34} assessed occupational sitting time, 1 study³⁶ assessed leisure screen time per day, 1 study²⁹ reported on the number of hours spent sitting per week, and 1 study³³ assessed sitting and screen time per day.

The other 12 studies used objective devices to measure sedentary behaviors. The majority of the studies used accelerometers, <u>11, 13-15, 20, 23-25, 27, 30, 31</u> while 1 study^{<u>12</u>} used an activity monitor.

Outcomes

All included studies addressed all-cause mortality as an outcome.

Populations Analyzed

The table below lists the populations analyzed in each article.

	Sex	Race/ Ethnicity	Age	Socio- economic Status	Weight Status	Disability Status	Chronic Conditions	Other
Biswas, 2015			Adults					
Chau, 2013			Adults					
de Rezende, 2014			Adults					
Ding, 2015			Adults ≥45					
Edwards, 2016			Adults 20– 85					
Ekelund, 2016			Adults					
Ensrud, 2014	Male		Adults ≥65					
Evenson, 2017			Adults ≥40					
Evenson, 2016			Adults ≥40					
Fishman, 2016			Adults 50– 79					
Grontved, 2011			Adults					
Grunseit, 2017			Adults ≥20					
Hagger- Johnson, 2016			Adults 37– 78					
Keadle, 2015	Male		Adults 50– 71					
Kikuchi, 2015	Male		Adults 40– 69 (baseline), 50–74 (follow-up)					
Koolhaas, 2017	Male		Adults 45– 98					
Krokstad, 2017			Adults 20– 69					
Lee, 2016a	Women		Adults 50-59, 60–69, 70– 79, 80–89				Diabetes, Congestive Heart Failure	Post- menopausal, Smoking
Lee, 2016b			Adults ≥18					
Loprinzi, 2016a			Adults 20– 85			Visually impaired		

Table 1. Populations Analyzed by All Sources of Evidence

	Sex	Race/ Ethnicity	Age	Socio- economic Status	Weight Status	Disability Status	Chronic Conditions	Other
Loprinzi, 2016b			Adults 20–85					
Martinez- Gomez, 2016			Adults ≥60			Disability		
Matthews, 2016			Adults ≥40					
Matthews, 2015	Male		Adults 59–82					
Proper, 2011			Adults					
Pulsford, 2015			Adults 35–55					
Schmid, 2016	Male		Adults 50–85					
Schmid, 2015			Adults ≥50					
Shuval, 2015			Adults ≥20					
Stamatakis, 2015			Adults ≥45					
Sun, 2015			Adults					
Thorp, 2011			Adults					
van der Ploeg, 2015	Male		Adults ≥21	Social class (five levels)	Normal/Heal thy Weight (BMI: 18.5– 24.9), Overweight (BMI: 25– 29.9), Obese (BMI: ≥30)			Smoking
Warren Anderson, 2016	Male	White, Black or African American	Adults 40–79	Low income				
Wijndaele, 2017			Adults 40–69					
Wilmot, 2012			Adults					

Table 1. Populations Analyzed by All Sources of Evidence (Continued)

Supporting Evidence

Existing Systematic Reviews and Meta-Analyses

Table 2. Existing Systematic Reviews and Meta-Analyses Individual Evidence Summary Tables

Meta-Analysis					
Citation: Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease					
incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann Intern					
Med. 2015;162(2):123-32.					
Purpose: To quantify	Abstract: BACKGROUND: The magnitude, consistency, and manner of				
the association	association between sedentary time and outcomes independent of physical				
between sedentary	activity remain unclear. PURPOSE: To quantify the association between				
time and	sedentary time and hospitalizations, all-cause mortality, cardiovascular				
hospitalizations, all-	disease, diabetes, and cancer in adults independent of physical activity.				
cause mortality,	DATA SOURCES: English-language studies in MEDLINE, PubMed, EMBASE,				
cardiovascular disease	CINAHL, Cochrane Library, Web of Knowledge, and Google Scholar				
(CVD), diabetes, and	databases were searched through August 2014 with hand-searching of in-				
cancer in adults	text citations and no publication date limitations. STUDY SELECTION:				
independent of PA.	Studies assessing sedentary behavior in adults, adjusted for physical activity				
Timeframe: Inception-	and correlated to at least 1 outcome. DATA EXTRACTION: Two independent				
2014	reviewers performed data abstraction and quality assessment, and a third				
Total # of Studies: 41	reviewer resolved inconsistencies. DATA SYNTHESIS: Forty-seven articles				
Author's Definition of	met our eligibility criteria. Meta-analyses were performed on outcomes for				
Sedentary:	cardiovascular disease and diabetes (14 studies), cancer (14 studies), and				
A distinct class of	all-cause mortality (13 studies). Prospective cohort designs were used in all				
waking behaviors	but 3 studies; sedentary times were quantified using self-report in all but 1				
characterized by little	study. Significant hazard ratio (HR) associations were found with all-cause				
physical movement and	mortality (HR, 1.240 [95% CI, 1.090 to 1.410]), cardiovascular disease				
low energy expenditure	mortality (HR, 1.179 [CI, 1.106 to 1.257]), cardiovascular disease incidence				
(≤1.5 metabolic	(HR, 1.143 [Cl, 1.002 to 1.729]), cancer mortality (HR, 1.173 [Cl, 1.108 to				
equivalents), including	1.242]), cancer incidence (HR, 1.130 [Cl, 1.053 to 1.213]), and type 2				
sitting, television	diabetes incidence (HR, 1.910 [CI, 1.642 to 2.222]). Hazard ratios associated				
watching, and reclined	with sedentary time and outcomes were generally more pronounced at				
posture.	lower levels of physical activity than at higher levels. LIMITATION: There				
Outcomes Addressed:	was marked heterogeneity in research designs and the assessment of				
All-cause mortality,	sedentary time and physical activity. CONCLUSION: Prolonged sedentary				
CVD mortality, cancer	time was independently associated with deleterious health outcomes				
mortality.	regardless of physical activity.				
Populations Analyzed:	Author-Stated Funding Source: No funding source used				
Adults					

Meta-Analysis

Citation: Chau JY, Grunseit AC, Chey T, et al. Daily sitting time and all-cause mortality: A metaanalysis. *PLoS One.* 2013;8(11):e80000. doi:10.1371/journal.pone.0080000.

Adults	Research Council
Populations Analyzed:	Author-Stated Funding Source: Australian National Health and Medical
All-cause mortality.	
Outcomes Addressed:	
waking time.	
substantially during	
expenditure	in addition to physical activity guidelines.
increase energy	to base clinical and public health recommendations for overall sitting time,
lying down and do not	These findings provide a starting point for identifying a threshold on which
that involve sitting or	vigorous physical activity appears to attenuate the hazardous association.
range of behaviors	are associated with greater risk of all-cause mortality and moderate-to-
Encompasses a broad	physical activity. CONCLUSIONS: Higher amounts of daily total sitting time
sitting time.	cause mortality for total daily sitting time was 5.9%, after adjusting for
defined as daily total	into account. The overall weighted population attributable fraction for all-
sitting time was	higher mortality risk for adults sitting 10 h/day, after taking physical activity
sedentary time and	>3-7 and >7 h/day total sitting, respectively. This model estimated a 34%
Sedentary: Daily	1.02-1.08) for every 1-hour increase in sitting time in intervals between 0-3,
Author's Definition of	HRs of 1.00 (95% CI: 0.98-1.03), 1.02 (95% CI: 0.99-1.05) and 1.05 (95% CI:
Total # of Studies: 6	physical activity adjustment, the spline model of best fit had dose-response
January 2013	between daily total sitting time and all-cause mortality were not linear. With
Timeframe: 1989–	income countries; mean study quality score was 12/15 points. Associations
relationships.	participants were mainly female, middle-aged or older adults from high-
dose-response	adults and 29,162 deaths over 3,565,569 person-years of follow-up. Study
examine potential	models. RESULTS: Six studies were included, involving data from 595,086
mortality, and to	summary estimates of associations were computed using random effects
and all-cause	confidence intervals. Two authors independently extracted the data and
daily total sitting time	reported estimates of relative risk, or odds ratios or hazard ratios with 95%
association between	quantitative exposure variable, all-cause mortality as the outcome and
examined the	included prospective cohort studies that had total daily sitting time as a
studies that have	sitting and health, and from authors' personal literature databases. We
prospective cohort	searches of multiple databases, reference lists of systematic reviews on
of all published	METHODS: Studies published from 1989 to January 2013 were identified via
summarize the results	and without adjustment for moderate-to-vigorous physical activity.
quantitatively	and all-cause mortality risk and to examine dose-response relationships with
Purpose: To	Abstract: OBJECTIVE: To quantify the association between daily total sitting

Systematic Review Citation: de Rezende LF, Rey-Lopez JP, Matsudo VK, do Carmo Luiz O. Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health. 2014;14:333. doi:10.1186/1471-2458-14-333. Purpose: To look for Abstract: BACKGROUND: In the last decade, sedentary behavior has associations between emerged as a new risk factor for health. The elderly spend most of their sedentary behavior and awake time in sedentary activities. Despite this high exposure, the impact multiple health of this sedentary behavior on the health of this population has not yet outcomes in adults over been reviewed. We systematically reviewed evidence for associations 60 years of age. between sedentary behavior and multiple health outcomes in adults over Timeframe: Inception-60 years of age. METHODS: We searched the Medline, Embase, Web of Science, SPORTDiscus, PsycINFO, CINAHL, LILLACS, and Sedentary 2013 Research Database for observational studies published up to May 2013. Total # of Studies: 23 Additionally, we contacted members of the Sedentary Behaviour Author's Definition of Research Network to identify articles that were potentially eligible. After Sedentary: Sedentary inclusion, the methodological quality of the evidence was assessed in behaviors are each study. RESULTS: We included 24 eligible articles in our systematic characterized by any review, of which only 2 (8%) provided high-quality evidence. Greater waking activity that sedentary time was related to an increased risk of all-cause mortality in requires an energy the older adults. Some studies with a moderate quality of evidence expenditure ranging from indicated a relationship between sedentary behavior and metabolic a basal metabolic rate of syndrome, waist circumference, and overweightness/obesity. The 1.0 to 1.5 and a sitting or findings for other outcomes such as mental health, renal cancer cells, and reclining posture. **Outcomes Addressed:** falls remain insufficient to draw conclusions. CONCLUSION: This systematic review supports the relationship between sedentary behavior All-cause mortality, and mortality in older adults. Additional studies with high methodological cardiovascular disease quality are still needed to develop informed guidelines for addressing mortality, colorectal sedentary behavior in older adults. cancer mortality. **Populations Analyzed:** Author-Stated Funding Source: Fundação de Amparo à Pesquisa do Adults Estado de São Paulo (FAPESP, São Paulo Research Foundation)

Meta-Analysis						
Citation: Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even						
	tal association of sitting time with mortality? A harmonised meta-analysis of					
	million men and women. <i>Lancet</i> . 2016;388(10051):1302-1310.					
doi:10.1016/S0140-673						
Purpose: To examine	Abstract: BACKGROUND: High amounts of sedentary behaviour have been					
the joint and stratified	associated with increased risks of several chronic conditions and mortality.					
associations of	However, it is unclear whether physical activity attenuates or even					
sedentary behavior	eliminates the detrimental effects of prolonged sitting. We examined the					
and physical activity	associations of sedentary behaviour and physical activity with all-cause					
with all-cause	mortality. METHODS: We did a systematic review, searching six databases					
mortality.	(PubMed, PsycINFO, Embase, Web of Science, Sport Discus, and Scopus)					
Timeframe:	from database inception until October, 2015, for prospective cohort studies					
Inception-2015	that had individual level exposure and outcome data, provided data on both					
Total # of Studies: 16	daily sitting or TV-viewing time and physical activity, and reported effect					
Author's Definition of	estimates for all-cause mortality, cardiovascular disease mortality, or breast,					
Sedentary:	colon, and colorectal cancer mortality. We included data from 16 studies, of					
Daily sitting or TV-	which 14 were identified through a systematic review and two were					
viewing time.	additional unpublished studies where pertinent data were available. All					
Outcomes Addressed:	study data were analysed according to a harmonised protocol, which					
All-cause mortality,	categorised reported daily sitting time and TV-viewing time into four					
cardiovascular disease	standardised groups each, and physical activity into quartiles (in metabolic					
mortality, and cancer	equivalent of task [MET]-hours per week). We then combined data across all					
mortality.	studies to analyse the association of daily sitting time and physical activity					
	with all-cause mortality, and estimated summary hazard ratios using Cox					
	regression. We repeated these analyses using TV-viewing time instead of					
	daily sitting time. FINDINGS: Of the 16 studies included in the meta-analysis,					
	13 studies provided data on sitting time and all-cause mortality. These					
	studies included 1 005 791 individuals who were followed up for 2-18·1					
	years, during which 84 609 (8·4%) died. Compared with the referent group					
	(ie, those sitting <4 h/day and in the most active quartile [>35.5 MET-h per					
	week]), mortality rates during follow-up were 12-59% higher in the two					
	lowest quartiles of physical activity (from HR=1·12, 95% Cl 1·08-1·16, for the					
	second lowest quartile of physical activity [<16 MET-h per week] and sitting					
	<4 h/day; to HR=1·59, 1·52-1·66, for the lowest quartile of physical activity					
	[<2.5 MET-h per week] and sitting >8 h/day). Daily sitting time was not					
	associated with increased all-cause mortality in those in the most active					
	quartile of physical activity. Compared with the referent (<4 h of sitting per					
	day and highest quartile of physical activity [>35.5 MET-h per week]), there					
	was no increased risk of mortality during follow-up in those who sat for					
	more than 8 h/day but who also reported >35.5 MET-h per week of activity					
	(HR=1·04; 95% Cl 0·99-1·10). By contrast, those who sat the least (<4 h/day)					
	and were in the lowest activity quartile (<2.5 MET-h per week) had a					
	significantly increased risk of dying during follow-up (HR=1·27, 95% CI 1·22-					
	1·31). Six studies had data on TV-viewing time (N=465 450; 43 740 deaths).					
	Watching TV for 3 h or more per day was associated with increased mortality					
	regardless of physical activity, except in the most active quartile, where					
	mortality was significantly increased only in people who watched TV for 5					

	h/day or more (HR=1·16, 1·05·1·28). INTERPRETATION: High levels of moderate intensity physical activity (ie, about 60-75 min per day) seem to eliminate the increased risk of death associated with high sitting time. However, this high activity level attenuates, but does not eliminate the increased risk associated with high TV-viewing time. These results provide further evidence on the benefits of physical activity, particularly in societies where increasing numbers of people have to sit for long hours for work and may also inform future public health recommendations.
Populations Analyzed: Adults	Author-Stated Funding Source: No funding source used

Meta-Analysis	
Citation: Grontved A, Hu	JFB. Television viewing and risk of type 2 diabetes, cardiovascular disease,
and all-cause mortality:	A meta-analysis. JAMA. 2011;305(23):2448-55. doi: 10.1001/jama.2011.812.
Purpose: To	Abstract: CONTEXT: Prolonged television (TV) viewing is the most prevalent
determine the	and pervasive sedentary behavior in industrialized countries and has been
association between	associated with morbidity and mortality. However, a systematic and
TV viewing and type 2	quantitative assessment of published studies is not available. OBJECTIVE: To
diabetes, nonfatal or	perform a meta-analysis of all prospective cohort studies to determine the
fatal cardiovascular	association between TV viewing and risk of type 2 diabetes, fatal or nonfatal
disease (CVD), and all-	cardiovascular disease, and all-cause mortality. DATA SOURCES AND STUDY
cause mortality, and	SELECTION: Relevant studies were identified by searches of the MEDLINE
to quantify the dose-	database from 1970 to March 2011 and the EMBASE database from 1974 to
response relationship	March 2011 without restrictions and by reviewing reference lists from
of TV viewing with the	retrieved articles. Cohort studies that reported relative risk estimates with
risk of these health	95% confidence intervals (CIs) for the associations of interest were included.
outcomes.	DATA EXTRACTION: Data were extracted independently by each author and
Timeframe: 1970–	summary estimates of association were obtained using a random-effects
March 2011	model. DATA SYNTHESIS: Of the 8 studies included, 4 reported results on
Total # of Studies: 8	type 2 diabetes (175,938 individuals; 6428 incident cases during 1.1 million
Author's Definition of	person-years of follow-up), 4 reported on fatal or nonfatal cardiovascular
Sedentary: TV viewing	disease (34,253 individuals; 1052 incident cases), and 3 reported on all-
or screen time.	cause mortality (26,509 individuals; 1879 deaths during 202,353 person-
Outcomes Addressed:	years of follow-up). The pooled relative risks per 2 hours of TV viewing per
All-cause mortality,	day were 1.20 (95% Cl, 1.14-1.27) for type 2 diabetes, 1.15 (95% Cl, 1.06-
CVD mortality.	1.23) for fatal or nonfatal cardiovascular disease, and 1.13 (95% CI, 1.07-
	1.18) for all-cause mortality. While the associations between time spent
	viewing TV and risk of type 2 diabetes and cardiovascular disease were
	linear, the risk of all-cause mortality appeared to increase with TV viewing
	duration of greater than 3 hours per day. The estimated absolute risk
	differences per every 2 hours of TV viewing per day were 176 cases of type 2
	diabetes per 100,000 individuals per year, 38 cases of fatal cardiovascular
	disease per 100,000 individuals per year, and 104 deaths for all-cause
	mortality per 100,000 individuals per year. CONCLUSION: Prolonged TV
	viewing was associated with increased risk of type 2 diabetes, cardiovascular
	disease, and all-cause mortality.
Populations Analyzed:	Author-Stated Funding Source: Danish Heart Foundation, Sygekassernes
Adults	Helsefond (the Danish Health Fund), Oticon Foundation, Augustinus
	Foundation, National Institutes of Health

Systematic Review						
•	an Mechelen W, Chinapaw MJ. Sedentary behaviors and health					
outcomes among adults: A systematic review of prospective studies. Am J Prev Med. 2011;40(2):174-						
182. doi:10.1016/j.amepre.2010.10.015.						
Purpose: To systematically	Abstract: CONTEXT: Nowadays, people spend a substantial amount					
review the literature with	of time per day on sedentary behaviors and it is likely that the time					
respect to the relationship	spent sedentary will continue to rise. To date, there is no review of					
between diverse sedentary	prospective studies that systematically examined the relationship					
behaviors and health	between diverse sedentary behaviors and various health outcomes					
outcomes among adults,	among adults. PURPOSE: This review aimed to systematically review					
taking into account the	the literature as to the relationship between sedentary behaviors and					
methodologic quality of the	health outcomes considering the methodologic quality of the studies.					
studies.	EVIDENCE ACQUISITION: In February 2010, a search for prospective					
Timeframe: 1989–February	studies was performed in diverse electronic databases. After					
2010	inclusion, in 2010, the methodologic quality of each study was					
Total # of Studies: 19	assessed. A best-evidence synthesis was applied to draw conclusions.					
Author's Definition of	EVIDENCE SYNTHESIS: 19 studies were included, of which 14 were of					
Sedentary: Activities that do	high methodologic quality. Based on inconsistency in findings among					
not increase energy	the studies and lack of high-quality prospective studies, insufficient					
expenditure substantially	evidence was concluded for body weight-related measures, CVD risk,					
above the resting level (1.0–	and endometrial cancer. Further, moderate evidence for a positive					
1.5 metabolic equivalents);	relationship between the time spent sitting and the risk for type 2					
includes activities such as	diabetes was concluded. Based on three high-quality studies, there					
sleeping, sitting, lying down,	was no evidence for a relationship between sedentary behavior and					
watching TV, and engaging in	mortality from cancer, but strong evidence for all-cause and CVD					
other forms of screen-based	mortality. CONCLUSIONS: Given the trend toward increased time in					
entertainment.	sedentary behaviors, additional prospective studies of high					
Outcomes Addressed: All-	methodologic quality are recommended to clarify the causal					
cause mortality,	relationships between sedentary behavior and health outcomes.					
cardiovascular disease	Meanwhile, evidence to date suggests that interventions aimed at					
mortality, cancer mortality.	reducing sedentary behavior are needed.					
Populations Analyzed: Adults	Author-Stated Funding Source: Not Reported					

Meta-Analysis						
•	Citation: Sun JW, Zhao LG, Yang Y, Ma X, Wang YY, Xiang YB. Association between television viewing					
time and all-cause morta	time and all-cause mortality: A meta-analysis of cohort studies. Am J Epidemiol. 2015;182(11):908-16.					
doi:10.1093/aje/kwv164	1.					
Purpose: To explore	Abstract: Findings on the association between television (TV) viewing and					
the magnitude and	all-cause mortality in epidemiologic studies have been inconsistent.					
shape of the	Therefore, we conducted a meta-analysis of data from prospective cohort					
association between	studies to quantify this association. Relevant articles were identified by					
TV-viewing time and	searching MEDLINE (PubMed; National Library of Medicine, Bethesda,					
all-cause mortality.	Maryland) and EMBASE (Elsevier B.V., Amsterdam, the Netherlands) from					
Timeframe:	inception to March 1, 2015, and reviewing the reference lists of retrieved					
Inception-2015	articles. Study-specific results were pooled using a random-effects model. Of					
Total # of Studies: 10	2,578 citations identified by the search strategy, 10 cohort studies (61,494					
Author's Definition of	deaths among 647,475 individuals) met the inclusion criteria. The summary					
Sedentary: TV-viewing	relative risk of all-cause mortality for the highest category of TV viewing time					
time (including	versus the lowest was 1.33 (95% confidence interval: 1.20, 1.47), with					
watching TV or video	heterogeneity among studies (I(2) = 66.7%, P(heterogeneity) = 0.001). In					
or using a computer).	dose-response meta-analysis, TV viewing time was statistically significantly					
Outcomes Addressed:	associated with all-cause mortality risk in a J-shaped fashion (P(nonlinearity)					
All-cause mortality.	= 0.001). These results indicate that prolonged TV viewing time might					
	increase the risk of all-cause mortality. Given the high prevalence of					
	excessive TV viewing, public health recommendations or interventions					
	aimed at decreasing the amount of TV viewing time in modern societies are					
	warranted.					
Populations Analyzed:	Author-Stated Funding Source: Shanghai Health Bureau Key Disciplines and					
Adults	Specialties Foundation					

Systematic Review

Citation: Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-2011. *Am J Prev Med.* 2011;41(2):207-215. doi:10.1016/j.amepre.2011.05.004.

2011,41(2).207 215. 001.10.1010	/j.amepre.2011.03.004.
Purpose: To systematically	Abstract: CONTEXT: To systematically review and provide an
review and provide an	informative synthesis of findings from longitudinal studies
informative synthesis of	published since 1996 reporting on relationships between self-
findings from longitudinal	reported sedentary behavior and device-based measures of
studies published since 1996	sedentary time with health-related outcomes in adults. EVIDENCE
reporting on relationships	ACQUISITION: Studies published between 1996 and January 2011
between self-reported	were identified by examining existing literature reviews and by
sedentary behavior and device-	systematic searches in Web of Science, MEDLINE, PubMed, and
based measures of sedentary	PsycINFO. English-written articles were selected according to study
time with health-related	design, targeted behavior, and health outcome. EVIDENCE
outcomes in adults.	SYNTHESIS: Forty-eight articles met the inclusion criteria; of these,
Timeframe: 1996–January	46 incorporated self-reported measures including total sitting time;
2011	TV viewing time only; TV viewing time and other screen-time
Total # of Studies: 48	behaviors; and TV viewing time plus other sedentary behaviors.
Author's Definition of	Findings indicate a consistent relationship of self-reported
Sedentary: A distinct class of	sedentary behavior with mortality and with weight gain from
activities that require low	childhood to the adult years. However, findings were mixed for
levels of energy expenditure in	associations with disease incidence, weight gain during adulthood,
the range of 1.0–1.5 metabolic	and cardiometabolic risk. Of the three studies that used device-
equivalents and involve sitting	based measures of sedentary time, one showed that markers of
during commuting and leisure	obesity predicted sedentary time, whereas inconclusive findings
time and sitting in the	have been observed for markers of insulin resistance.
workplace and the domestic	CONCLUSIONS: There is a growing body of evidence that sedentary
environment.	behavior may be a distinct risk factor, independent of physical
Outcomes Addressed: All-	activity, for multiple adverse health outcomes in adults. Prospective
cause mortality, cardiovascular	studies using device-based measures are required to provide a
disease mortality, cancer	clearer understanding of the impact of sedentary time on health
mortality.	outcomes.
Populations Analyzed: Adults	Author-Stated Funding Source: Australian National Health and
	Medical Research Council, Healthy Lifestyle Research Centre,
	Queensland Health, Victorian Health Promotion Foundation

Meta-Analysis							
•	ardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in						
	with diabetes, cardiovascular disease and death: Systematic review and						
	meta-analysis. Diabetologia. 2012;55(11):2895-2905. doi: 10.1007/s00125-012-2677-z.						
Purpose: To	Abstract: AIMS/HYPOTHESIS: Sedentary (sitting) behaviours are ubiquitous						
quantitatively	in modern society. We conducted a systematic review and meta-analysis						
synthesize existing	to examine the association of sedentary time with diabetes, cardiovascular						
observational evidence	disease and cardiovascular and all-cause mortality. METHODS: Medline,						
relating sedentary	Embase and the Cochrane Library databases were searched for terms						
(sitting) time to four key	related to sedentary time and health outcomes. Cross-sectional and						
clinical outcomes:	prospective studies were included. RR/HR and 95% CIs were extracted by						
diabetes, cardiovascular	two independent reviewers. Data were adjusted for baseline event rate						
disease (CVD),	and pooled using a random-effects model. Bayesian predictive effects and						
cardiovascular	intervals were calculated to indicate the variance in outcomes that would						
mortality, and all-cause	be expected if new studies were conducted in the future. RESULTS:						
mortality.	Eighteen studies (16 prospective, two cross-sectional) were included, with						
Timeframe: Inception-	794,577 participants. Fifteen of these studies were moderate to high						
2012	quality. The greatest sedentary time compared with the lowest was						
Total # of Studies: 18	associated with a 112% increase in the RR of diabetes (RR 2.12; 95%						
Author's Definition of	credible interval [Crl] 1.61, 2.78), a 147% increase in the RR of						
Sedentary: Time spent	cardiovascular events (RR 2.47; 95% CI 1.44, 4.24), a 90% increase in the						
in sedentary activities or	risk of cardiovascular mortality (HR 1.90; 95% CrI 1.36, 2.66) and a 49%						
time spent in the	increase in the risk of all-cause mortality (HR 1.49; 95% CrI 1.14, 2.03). The						
absence of movement.	predictive effects and intervals were only significant for diabetes.						
Outcomes Addressed:	CONCLUSIONS/INTERPRETATION: Sedentary time is associated with an						
All-cause mortality, CVD	increased risk of diabetes, cardiovascular disease and cardiovascular and						
mortality.	all-cause mortality; the strength of the association is most consistent for						
	diabetes.						
Populations Analyzed:	Author-Stated Funding Source: Department of Cardiovascular Sciences,						
Adults	University of Leicester						

Table 3. Existing Systematic Reviews and Meta-Analyses Quality Assessment Chart

AMSTARExBP: SR/MA									
	Biswas, 2015	Chau, 2013	de Rezende, 2014	Ekelund, 2016	Grontve d, 2011	Proper, 2011	Sun, 2015	Thorp, 2011	Wilmot, 2012
Review questions and inclusion/exclusion criteria delineated prior to executing search strategy.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Population variables defined and considered in methods.	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
Comprehensive literature search performed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Duplicate study selection and data extraction performed.	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes
Search strategy clearly described.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Relevant grey literature included in review.	No	Yes	Yes	Yes	No	No	No	No	No
List of studies (included and excluded)	No	Yes	Yes	No	Yes	No	No	No	No
Characteristics of included studies provided.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
FITT defined and examined in relation to outcome effect sizes.	Yes	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A
Scientific quality (risk of bias) of included studies assessed and documented.	Yes	Yes	Yes	Yes	No	Yes	No	No	Yes
Results depended on study quality, either overall, or in interaction with moderators.	Yes	Yes	Yes	Yes	N/A	Yes	N/A	N/A	Yes
Scientific quality used appropriately in formulating conclusions.	Yes	Yes	Yes	Yes	N/A	Yes	N/A	N/A	Yes
Data appropriately synthesized and if applicable, heterogeneity assessed.	Yes	Yes	N/A	Yes	Yes	N/A	Yes	N/A	Yes
Effect size index chosen justified, statistically.	Yes	Yes	N/A	Yes	Yes	N/A	No	N/A	Yes
Individual-level meta- analysis used.	No	No	N/A	Yes	Partially Yes	N/A	No	N/A	No
Practical recommendations clearly addressed.	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Likelihood of publication bias assessed.	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes
Conflict of interest disclosed.	Yes	Yes	No	Yes	Yes	No	Yes	No	Yes

Table 4. Original Research Individual Evidence Summary Tables

Original Research

Citation: Ding D, Rogers K, van der Ploeg H, Stamatakis E, Bauman AE. Traditional and emerging lifestyle risk behaviors and all-cause mortality in middle-aged and older adults: Evidence from a large population-based Australian cohort. *PLoS Med.* 2015;12(12):e1001917. doi:10.1371/journal.pmed.1001917.

Purpose: To examine the association between a lifestyle risk index and all-cause mortality, and to guantify the population-attributable risk associated with the risk score among adults.

	able fisk associated with the fisk score among addits.
Study Design: Prospective	Abstract: BACKGROUND: Lifestyle risk behaviors are responsible for
cohort study	a large proportion of disease burden worldwide. Behavioral risk
Location: Australia	factors, such as smoking, poor diet, and physical inactivity, tend to
Sample: 231,048	cluster within populations and may have synergistic effects on
Attrition Rate: 12.83%	health. As evidence continues to accumulate on emerging lifestyle
Sample Power: Not Reported	risk factors, such as prolonged sitting and unhealthy sleep patterns, incorporating these new risk factors will provide clinically relevant
Exposure Measurement	information on combinations of lifestyle risk factors. METHODS AND
Self-Reported: Sedentary	FINDINGS: Using data from a large Australian cohort of middle-aged
behavior assessed with a	and older adults, this is the first study to our knowledge to examine
single question adapted from	a lifestyle risk index incorporating sedentary behavior and sleep in
the IPAQ, hours spent sitting	relation to all-cause mortality. Baseline data (February 2006- April
in a typical 24-hour day.	2009) were linked to mortality registration data until June 15, 2014.
Measures Steps: No	Smoking, high alcohol intake, poor diet, physical inactivity,
Measures Bouts: No	prolonged sitting, and unhealthy (short/long) sleep duration were
	measured by questionnaires and summed into an index score. Cox
	proportional hazards analysis was used with the index score and
	each unique risk combination as exposure variables, adjusted for
	socio-demographic characteristics. During 6 y of follow-up of
	231,048 participants for 1,409,591 person-years, 15,635 deaths
	were registered. Of all participants, 31.2%, 36.9%, 21.4%, and 10.6%
	reported 0, 1, 2, and 3+ risk factors, respectively. There was a strong
	relationship between the lifestyle risk index score and all-cause
	mortality. The index score had good predictive validity (c index =
	0.763), and the partial population attributable risk was 31.3%. Out of
	all 96 possible risk combinations, the 30 most commonly occurring
	combinations accounted for more than 90% of the participants.
	Among those, combinations involving physical inactivity, prolonged
	sitting, and/or long sleep duration and combinations involving
	smoking and high alcohol intake had the strongest associations with
	all-cause mortality. Limitations of the study include self-reported
	and under-specified measures, dichotomized risk scores, lack of
	long-term patterns of lifestyle behaviors, and lack of cause-specific
	mortality data. CONCLUSIONS: Adherence to healthy lifestyle
	behaviors could reduce the risk for death from all causes. Specific
	combinations of lifestyle risk behaviors may be more harmful than
	others, suggesting synergistic relationships among risk factors.

Refers to Other Materials: Yes	Outcomes Examined: All-cause mortality: ascertained from the NSW
Examine Cardiorespiratory	Registry of Births, Deaths and Marriages, survival time measured as
Fitness as Outcome: No	time lapse (weeks) from baseline data collection to death or censoring.
Populations Analyzed: Adults	Author-Stated Funding Source: National Health and Medical
≥45	Research Council Early Career Fellowship

Citation: Edwards MK, Loprinzi PD. All-cause mortality risk as a function of sedentary behavior, moderate-to-vigorous physical activity and cardiorespiratory fitness. *Phys Sportsmed*. 2016;44(3):223-30. doi:10.1080/00913847.2016.1221751.

Purpose: To evaluate both the independent and combined associations of moderate to vigorous PA, sedentary behavior, and cardiorespiratory fitness with mortality among adults.

Study Design: Prospective cohort studyAbstract: OBJECTIVE: Emerging work demonstratesLocation: United Statesindividual associations of sedentary behavior, moderate-Sample: 2,955to-vigorous physical activity (MVPA) and cardiorespiratoryAttrition Rate: 46.61%evaluated all three of these parameters in a model whenExposure Measurementconsidering mortality risk, and their potential additiveDevice-Measured: Accelerometer,association on mortality risk has not been fully evaluated,which was the purpose of this study. METHODS: Datafrom the 2003-2006 National Health and NutritionMeasures Steps: NoExamination Survey were used (N = 2,295 adults 20-85Weasures Bouts: NoYrs), with follow-up through 2011. Sedentary behavior andMVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary score of 0, those with aPACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.32; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: ideath certificate data from the National Death Index.Populations Analyzed: Adults 20–85Author-Stated Funding Source: No funding source used	sedentary benavior, and cardiorespiratory	
Sample: 2,955to-vigorous physical activity (MVPA) and cardiorespiratory fitness (CRF) on mortality risk. Limited research has evaluated all three of these parameters in a model when considering mortality risk and their potential additive association on mortality risk has not been fully evaluated, which was the purpose of this study. METHODS: Data from the 2003-2006 National Health and Nutrition Examination Survey were used (N = 2,295 adults 20-85 yrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.35; 95% CI: 0.017-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.01; P < 0	Study Design: Prospective cohort study	Abstract: OBJECTIVE: Emerging work demonstrates
Attrition Rate: 46.61% Sample Power: Not Reportedfitness (CRF) on mortality risk. Limited research has evaluated all three of these parameters in a model when considering mortality risk, and their potential additive association on mortality risk has not been fully evaluated, which was the purpose of this study. METHODS: Data from the 2003-2006 National Health and Nutrition Examination Survey were used (N = 2,295 adults 20-85 yrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcome: No		
Sample Power: Not Reportedevaluated all three of these parameters in a model when considering mortality risk, and their potential additive association on mortality risk has not been fully evaluated, which was the purpose of this study. METHODS: Data from the 2003-2006 National Health and Nutrition Examination Survey were used (N = 2,295 adults 20-85 yrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined All-cause mortality: death certificate data from the National Death Index.	• •	
Exposure Measurement Device-Measured: Accelerometer, sedentary time measured for 7 days, defined as counts/min <= 99.considering mortality risk, and their potential additive association on mortality risk has not been fully evaluated, which was the purpose of this study. METHODS: Data from the 2003-2006 National Health and Nutrition Examination Survey were used (N = 2,295 adults 20-85 yrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
Device-Measured: Accelerometer, sedentary time measured for 7 days, defined as counts/min <= 99.association on mortality risk has not been fully evaluated, which was the purpose of this study. METHODS: Data from the 2003-2006 National Health and Nutrition Examination Survey were used (N = 2,295 adults 20-85 yrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.	Sample Power: Not Reported	·
sedentary time measured for 7 days, defined as counts/min <= 99.which was the purpose of this study. METHODS: Data from the 2003-2006 National Health and Nutrition Examination Survey were used (N = 2,295 adults 20-85 yrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% Cl: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% Cl: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% Cl: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% Cl: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% Cl: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% Cl: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.	Exposure Measurement	
defined as counts/min <= 99.from the 2003-2006 National Health and NutritionMeasures Steps: NoExamination Survey were used (N = 2,295 adults 20-85Measures Bouts: NoWVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% Cl: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% Cl: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% Cl: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% Cl: 0.17-0.63, P = 0.002), 82% (HR = 0.02; 95% Cl: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.	Device-Measured: Accelerometer,	
Measures Steps: No Measures Bouts: NoExamination Survey were used (N = 2,295 adults 20-85 yrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% Cl: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% Cl: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% Cl: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a BACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% Cl: 0.17-0.63, P = 0.002), 82% (HR = 0.04; 95% Cl: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% Cl: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% Cl: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.	sedentary time measured for 7 days,	
Measures Bouts: Noyrs), with follow-up through 2011. Sedentary behavior and MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% Cl: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% Cl: 0.15- 0.82; P = 0.02) and above median MVPA (HR = 0.20; 95% Cl: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% Cl: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% Cl: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% Cl: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.	defined as counts/min <= 99.	
MVPA were objectively assessed (accelerometry) with cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% Cl: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% Cl: 0.15- 0.82; P = 0.02) and above median MVPA (HR = 0.20; 95% Cl: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% Cl: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% Cl: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% Cl: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: ceath certificate data from the National Death Index.	Measures Steps: No	, , , ,
cardiorespiratory estimated from a prediction equation taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.	Measures Bouts: No	,
taking into consideration participant demographic, anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		MVPA were objectively assessed (accelerometry) with
anthropometric and behavioral characteristics. Using the median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.02-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
median values, a PACS (Physical Activity Cardiorespiratory Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
Sedentary) score was created that ranged from 0-3, indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		-
indicating the number of these three positive characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% Cl: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% Cl: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% Cl: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% Cl: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% Cl: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% Cl: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
characteristics. RESULTS: Those with below median sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
sedentary behavior did not have a reduced all-cause mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
mortality risk (HR = 0.59; 95% CI: 0.34-1.04; P = 0.07), but those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
those with above median MVPA (HR = 0.35; 95% CI: 0.15- 0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
0.82; P = 0.02) and above median CRF did (HR = 0.20; 95% CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
CI: 0.09-0.43; P < 0.001). Compared to those with a PACS score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
score of 0, those with a PACS score of 1, 2, and 3, respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
respectively, had a 67% (HR = 0.33; 95% CI: 0.17-0.63, P = 0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
0.002), 82% (HR = 0.12; 95% CI: 0.05-0.30; P < 0.001) and 96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
96% (HR = 0.04; 95% CI: 0.02-0.11; P < 0.001) reduced risk of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
of all-cause mortality. CONCLUSION: Cardiorespiratory fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
fitness and MVPA, but not sedentary behavior, were independently associated with reduced mortality risk. Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
independently associated with reduced mortality risk.Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
Adults with all three characteristics (below median sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		•
sedentary and above median MVPA and CRF), however, had the lowest mortality risk.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
had the lowest mortality risk.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		
Refers to Other Materials: YesOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.Outcome: NoOutcomes Examined: All-cause mortality: death certificate data from the National Death Index.		, , , , , , , , , , , , , , , , , , , ,
Examine Cardiorespiratory Fitness as Outcome: Nocertificate data from the National Death Index.		· · · · · · · · · · · · · · · · · · ·
Outcome: No		
		certificate data from the National Death Index.
Populations Analyzed: Adults 20–85 Author-Stated Funding Source: No funding source used	Outcome: No	
	Populations Analyzed: Adults 20–85	Author-Stated Funding Source: No funding source used

Citation: Ensrud KE, Blackwell TL, Cauley JA, et al. Objective measures of activity level and mortality in older men. *J Am Geriatr Soc.* 2014;62(11):2079-87. doi:10.1111/jgs.13101.

Purpose: To comprehensively assess associations of objective measures of activity level with mortality risk in older men.

Study Design Drospective cohert	Abstract: ODIECTIVES, To evening according between
Study Design: Prospective cohort	Abstract: OBJECTIVES: To examine associations between
study	objective measures of activity level and mortality risk in older
Location: United States	men. DESIGN: Prospective cohort study. SETTING: Six U.S. sites.
Sample: 2,918	PARTICIPANTS: Men aged 71 and older followed an average of
Attrition Rate: 51.32%	4.5 years (N = 2,918). MEASUREMENTS: Time awake spent in
Sample Power: Not Reported	sedentary behavior (metabolic equivalent (MET) level =1.50),</th
Exposure Measurement	light activity (MET level 1.51-2.99), and at least moderate
Device-Measured: Activity	activity (MET level >/=3.00) measured using an activity monitor
monitor, time (minutes/24 hours)	worn for 5 days or longer and expressed as quartiles. Deaths
spent sleeping, sedentary behavior	were confirmed with death certificates; cause of death was
(metabolic equivalent ≤ 1.50).	adjudicated by review of certificates and records. RESULTS:
Compared across quartiles of time	During follow-up, 409 (14%) men died. After multivariable
spent in sedentary behavior.	adjustment, comparing Q4 with Q1, more time spent in
Measures Steps: No	sedentary behavior (Q4 vs Q1, hazard ratio (HR) = 1.51, 95%
Measures Bouts: No	confidence interval (CI) = 1.10-2.08), less time spent in light
	activity (Q1 vs Q4, HR = 1.54, 95% CI = 1.06-2.24), and less time
	spent in at least moderate activity (Q1 vs Q4, HR = 1.56, 95% Cl
	= 1.09-2.25) were similarly associated with greater mortality
	risk primarily due to higher risks of cardiovascular and
	noncardiovascular, noncancer death. The association between
	time spent in sedentary behavior and mortality varied
	according to time spent at higher activity level. More time
	spent in sedentary behavior was associated with greater risk of
	death in men spending 1.2 (median) h/d or more in at least
	moderate activity (Q4 vs Q1, HR = 2.09, 95% CI = 1.26-3.49) but
	not in those spending less time (Q4 vs Q1, HR = 1.02 , 95% Cl =
	0.62-1.66) (P = .005 for interaction). CONCLUSION: In older men
	exceeding current guidelines on physical activity, more time
	spent in sedentary behavior is associated with greater mortality
	risk.
Refers to Other Materials: Yes	Outcomes Examined: Mortality: participants contacted every
Examine Cardiorespiratory Fitness	four months to ascertain vital status; death certificates and
as Outcome: No	cause of death adjudicated due to cardiovascular disease,
	cancer, or other cause by central physician review.
Populations Analyzed: Adults ≥65,	
Male	Author-Stated Funding Source: National Institutes of Health
ויומופ	

Citation: Evenson KR, Herring AH, Wen F. Accelerometry-assessed latent class patterns of physical activity and sedentary behavior with mortality. *Am J Prev Med.* 2017;52(2):135-43. doi:10.1016/j.amepre.2016.10.033.

Purpose: To explore accelerometry-assessed day-to-day patterns of PA and sedentary behavior with all-cause mortality among adults.

an eause mortancy among address	
Study Design: Prospective cohort	Abstract: INTRODUCTION: Latent class analysis provides a
study	method for understanding patterns of physical activity and
Location: United States	sedentary behavior. This study explored the association of
Sample: 4,510	accelerometer-assessed patterns of physical activity/sedentary
Attrition Rate: 0	behavior with all-cause mortality. METHODS: The sample
Sample Power: Not Reported	included 4,510 U.S. National Health and Nutrition Examination
Exposure Measurement	Survey participants aged >/=40 years enrolled in 2003-2006
Device-Measured: Accelerometer	with mortality follow-up through 2011. Participants used a
(counts/minute), sedentary bouts	hip-worn accelerometer for 1 week that provided minute-by-
were defined as \geq 30 minutes with	minute information on physical activity/sedentary behavior.
at least 80% of minutes below	Accelerometry patterns were derived using latent class
sedentary threshold.	analysis. Cox proportional hazards models provided adjusted
Measures Steps: No	hazard ratios with 95% Cls. Analyses were conducted from
Measures Bouts: Yes	2014 to 2016. RESULTS: During an average of 6.6 years of
	follow-up, 513 deaths occurred. For average counts/minute,
	the more-active classes had a lower risk of mortality compared
	with the lowest (Class 1). Findings were generally similar for
	percentage of the day in minutes and bouts of moderate to
	vigorous physical activity, defined two ways. For percentage of
	the day in sedentary behavior, generally no associations were
	identified. However, the class with the highest percentage of
	the day in sedentary bouts (Class 1) had a higher risk of
	mortality (adjusted hazard ratio, 2.10; 95% CI=1.11, 3.97)
	versus the class with fewer sedentary bouts (Class 7).
	CONCLUSIONS: In this national observational study, time spent
	in physical activity reduced the risk of all-cause mortality and
	time spent in sedentary bouts increased the risk of all-cause
	mortality, regardless of how both were accumulated. The
	latent class analysis contributed to understanding the impact
	of patterning of physical activity and sedentary behavior on
	mortality.
Refers to Other Materials: Yes	Outcomes Examined: All-cause mortality: any cause of death,
Examine Cardiorespiratory Fitness	except for deaths related to external causes.
as Outcome: No	
Populations Analyzed: Adults ≥40	Author-Stated Funding Source: National Institutes of Health,
	National Heart, Lung, and Blood Institute

Citation: Evenson KR, Wen F, Herring AH. Associations of accelerometry-assessed and self-reported physical activity and sedentary behavior with all-cause and cardiovascular mortality among US adults. *Am J Epidemiol*. 2016;184(9):621-32.

Purpose: To explore the associations of both accelerometer-assessed and self-reported PA and sedentary behavior with the risks of all-cause and cardiovascular disease mortality among adults.

sedentary benavior with the hisks of an	cause and calculovascular disease moltanty among adults.
Study Design: Prospective cohort	Abstract: The US physical activity (PA) recommendations
study	were based primarily on studies in which self-reported data
Location: United States	were used. Studies that include accelerometer-assessed PA
Sample: 3,809	and sedentary behavior can contribute to these
Attrition Rate: 40.06%	recommendations. In the present study, we explored the
Sample Power: Not Reported	associations of PA and sedentary behavior with all-cause and
Exposure Measurement	cardiovascular disease (CVD) mortality in a nationally
Device-Measured: Accelerometer,	representative sample. Among the 2003-2006 National
sedentary behavior (minutes/day)	Health and Nutrition Examination Survey cohort, 3,809 adults
compared by quartiles (≥588.4, 497–	40 years of age or older wore an accelerometer for 1 week
588.3, 413.5–497.6, ≤413.4),	and self-reported their PA levels. Mortality data were verified
sedentary bouts (minutes/day)	through 2011, with an average of 6.7 years of follow-up. We
compared by quartiles (≥518.4,	used Cox proportional hazards models to obtain adjusted
380.7–518.3, 265.0–380.6, ≤264.9).	hazard ratios and 95% confidence intervals. After excluding
Measures Steps: No	the first 2 years, there were 337 deaths (32% or 107 of which
Measures Bouts: Yes	were attributable to CVD). Having higher accelerometer-
	assessed average counts per minute was associated with
	lower all-cause mortality risk: When compared with the first
	quartile, the adjusted hazard ratio was 0.37 (95% confidence
	interval: 0.23, 0.59) for the fourth quartile, 0.39 (95%
	confidence interval: 0.27, 0.57) for the third quartile, and
	0.60 (95% confidence interval: 0.45, 0.80) second quartile.
	Results were similar for CVD mortality. Lower all-cause and
	CVD mortality risks were also generally observed for persons
	with higher accelerometer-assessed moderate and moderate-
	to-vigorous PA levels and for self-reported moderate-to-
	vigorous leisure, household and total activities, as well as for
	meeting PA recommendations. Accelerometer-assessed
	sedentary behavior was generally not associated with all-
	cause or CVD mortality in fully adjusted models. These
	findings support the national PA recommendations to reduce
	mortality.
Refers to Other Materials: Yes	Outcomes Examined: All-cause and cardiovascular mortality:
Examine Cardiorespiratory Fitness as	National Death Index.
Outcome: No	
Populations Analyzed: Adults ≥40	Author-Stated Funding Source: National Heart, Lung, and
	Blood Institute, National Institutes of Health

Original Research	
-	Zipunnikov V, et al. Association between objectively measured
	NHANES. <i>Med Sci Sports Exerc</i> . 2016;48(7):1303-11.
doi:10.1249/MSS.0000000000000	
	ter-measured total, light, and moderate-to-vigorous physical activity
of mortality in a nationally repres	
Study Design: Prospective	Abstract: PURPOSE: We examined total activity, light activity, and
cohort study	moderate-to-vigorous physical activity (MVPA) as predictors of
Location: United States	mortality in a nationally representative sample of older adults.
Sample: 3,029	Then we explored the theoretical consequences of replacing
Attrition Rate: 17.08%	sedentary time with the same duration of light activity or MVPA.
Sample Power: Not Reported	METHODS: Using accelerometer-measured activity, the
Exposure Measurement	associations between total activity, light activity (100-2019 counts
Device-Measured:	per minute), and MVPA (>2019 counts per minute) counts and
Accelerometer, sedentary	mortality were examined in adults age 50 to 79 yr in the National
behavior defined as less than	Health and Nutrition Examination Survey, 2003-2006 (n = 3029),
100 counts per minute.	with mortality follow-up through December 2011. Cox
Sedentary behavior was not the	proportional hazard models were fitted to estimate mortality risks.
main exposure of interest but	An isotemporal substitution model was used to examine the
was used as a covariate.	theoretical consequences of replacing sedentary time with light
Measures Steps: No	activity or MVPA on mortality. RESULTS: After adjusting for
Measures Bouts: No	potential confounders, including age, sex, race/ethnicity,
	education, BMI, and the presence of comorbid conditions, those in
	the highest tertile of total activity counts had one fifth the risk of
	death of those in the lowest tertile (hazard ratio [HR] = 0.21, 95%
	confidence interval [CI] = 0.12-0.38), and those in the middle tertile
	had one third the risk of death (HR = 0.36, 95% CI = 0.30-0.44). In
	addition, replacing 30 min of sedentary time with light activity was
	associated with significant reduction in mortality risk (after 5 yr of
	follow-up: HR = 0.80, 95% CI = 0.75-0.85). Replacing 30 min of
	sedentary time with MVPA was also associated with reduction in
	mortality risk (HR = 0.49, 95% CI = 0.25-0.97). CONCLUSIONS:
	Greater total activity is associated with lower all-cause mortality
	risk. Replacing sedentary time with light activity or MVPA may
	reduce mortality risk for older adults.
Refers to Other Materials: Yes	Outcomes Examined: Mortality: death records from the National
Examine Cardiorespiratory	Death Index.
Fitness as Outcome: No	
Populations Analyzed: Adults	Author-Stated Funding Source: National Institute on Aging,
50–79	National Institutes of Health

Citation: Grunseit AC, Chau JY, Rangul V, Holmen TL, Bauman A. Patterns of sitting and mortality in the Nord-Trondelag health study (HUNT). *Int J Behav Nutr Phys Act.* 2017;14(1):8. doi:10.1186/s12966-016-0457-8.

Purpose: To examine the associations between sitting time, assessed at two time points 11 years apart, and risk of all-cause and cardio-metabolic disease mortality among adults.

apart, and tisk of all-cause and ca	dio-metabolic disease mortainty among addits.
Study Design: Prospective	Abstract: BACKGROUND: Current evidence concerning sedentary
cohort study	behaviour and mortality risk has used single time point
Location: Norway	assessments of sitting. Little is known about how changes in sitting
Sample: 25,651	levels over time affect subsequent mortality risk. AIM: To examine
Attrition Rate: 0	the associations between patterns of sitting time assessed at two
Sample Power: Not Reported	time points 11 years apart and risk of all-cause and cardio-
Exposure Measurement	metabolic disease mortality. METHODS: Participants were 25,651
Self-Reported: Single question:	adults aged > =20 years old from the Nord-Trondelag Health Study
"How many hours do you	with self-reported total sitting time in 1995-1997 (HUNT2) and
usually spend sitting down	2006-2008 (HUNT3). Four categories characterised patterns of
during a 24-h period?";	sitting: (1) low at HUNT2/ low at HUNT3, 'consistently low sitting';
classified 8 hours or more as	(2) low at HUNT2/high at HUNT3, 'increased sitting'; (3) high at
"high sitting," sitting pattern	HUNT2/low at HUNT3, 'reduced sitting'; and (4) high at HUNT2
combined high (≥ 8h/day) and	/high at HUNT3, 'consistently high sitting'. Associations of sitting
low (<8 h/day) over two	pattern with all-cause and cardio-metabolic disease mortality were
surveys. Sitting yielded four	analysed using Cox regression adjusted for confounders. RESULTS:
categories: "consistently low	Mean follow-up was 6.2 years (158880 person-years); 1212
sitting"; "increased sitting";	participants died. Compared to 'consistently low sitting', adjusted
"reduced sitting"; and	hazard ratios for all-cause mortality were 1.51 (95% CI: 1.28-2.78),
"consistently high sitting."	1.03 (95% CI: 0.88-1.20), and 1.26 (95% CI: 1.06-1.51) for
Measures Steps: No	'increased sitting', 'reduced sitting' and 'consistently high sitting'
Measures Bouts: No	respectively. CONCLUSIONS: Examining patterns of sitting over
	time augments single time-point analyses of risk exposures
	associated with high sitting time. Whilst sitting habits can be stable
	over a long period, life events (e.g., changing jobs, retiring or
	illness) may influence sitting trajectories and therefore sitting-
	attributable risk. Reducing sitting may yield mortality risks
	comparable to a stable low-sitting pattern.
Refers to Other Materials: No	Outcomes Examined: Mortality from all causes and from cardio-
Examine Cardiorespiratory	metabolic diseases (diseases of the circulatory system; endocrine,
Fitness as Outcome: No	nutritional, and metabolic diseases): linked to Norwegian Causes of
	Death Registry, causes of death coded based on the International
	Classification of Diseases.
Populations Analyzed: Adults	Author-Stated Funding Source: National Heart Foundation of
≥20	Australia

Citation: Hagger-Johnson G, Gow AJ, Burley V, Greenwood D, Cade JE. Sitting time, fidgeting, and allcause mortality in the UK women's cohort study. *Am J Prev Med.* 2016;50(2):154-60. doi:10.1016/j.amepre.2015.06.025.

Purpose: To determine if fidgeting modified the association between longer sitting times and mortality among adult women.

mortality among addit women.	
Study Design: Prospective cohort	Abstract: INTRODUCTION: Sedentary behaviors (including
study	sitting) may increase mortality risk independently of physical
Location: United Kingdom	activity level. Little is known about how fidgeting behaviors
Sample: 10,937	might modify the association. METHODS: Data were from the
Attrition Rate: 23.22%	United Kingdom (UK) Women's Cohort Study. In 1999-2002, a
Sample Power: Not Reported	total of 12,778 women (aged 37-78 years) provided data on
Exposure Measurement	average daily sitting time, overall fidgeting (irrespective of
Self-Reported: Sitting time per day	posture), and a range of relevant covariates including physical
([5 x weekday + 2 x weekend	activity, diet, smoking status, and alcohol consumption.
hours]/7), divided into three	Participants were followed for mortality over a mean of 12
sitting groups: low (<5 hours/day),	years. Proportional hazards Cox regression models estimated
medium (5 or 6 hours/day), and	the relative risk of mortality in high (versus low) and medium
high (≥ 7 hours/day).	(versus low) sitting time groups. RESULTS: Fidgeting modified
Measures Steps: No	the risk associated with sitting time (p=0.04 for interaction),
Measures Bouts: No	leading us to separate groups for analysis. Adjusting for
	covariates, sitting for >/=7 hours/day (versus <5 hours/day) was
	associated with 30% increased all-cause mortality risk (hazard
	ratio [HR]=1.30, 95% CI=1.02, 1.66) only among women in the
	low fidgeting group. Among women in the high fidgeting group,
	sitting for 5-6 hours/day (versus <5 hours/day) was associated
	with decreased mortality risk (HR=0.63, 95% CI=0.43, 0.91),
	adjusting for a range of covariates. There was no increased
	mortality risk from longer sitting time in the middle and high
	fidgeting groups. CONCLUSIONS: Fidgeting may reduce the risk
	of all-cause mortality associated with excessive sitting time.
	More detailed and better-validated measures of fidgeting
	should be identified in other studies to replicate these findings
	and identity mechanisms, particularly measures that distinguish
	fidgeting in a seated from standing posture.
Refers to Other Materials: No	Outcomes Examined: All-cause mortality: vital status was
Examine Cardiorespiratory Fitness	monitored using the National Health Service number assigned.
as Outcome: No	
Populations Analyzed: Adults 37–	Author-Stated Funding Source: The World Cancer Research
78	Fund, Biotechnology and Biological Sciences Research Council
	and Medical Research Council, Royal Society of Edinburgh

Original Research	Original Research		
Citation: Keadle SK, A	Arem H, Moore SC, Sampson JN, Matthews CE. Impact of changes in television		
viewing time and phy	vsical activity on longevity: A prospective cohort study. Int J Behav Nutr Phys Act.		
2015;12:156. doi:10.	1186/s12966-015-0315-0.		
Purpose: To estimate	e the mortality risk associated with many years of prolonged TV viewing and		
evaluate the influence	e of changes in TV-viewing time on mortality risk among older adults.		
Study Design:	Abstract: BACKGROUND: Television viewing is a highly prevalent sedentary		
Prospective cohort	behavior among older adults, yet the mortality risks associated with hours of		
study	daily viewing over many years and whether increasing or decreasing viewing		
Location: United	time affects mortality is unclear. This study examined: 1) the long-term		
States	association between mortality and daily viewing time; 2) the influence of		
Sample: 165,087	reducing and increasing in television viewing time on longevity and 3) combined		
Attrition Rate:	effects of television viewing and moderate-to-vigorous physical activity (MVPA)		
25.36%	on longevity. METHODS: Participants included 165,087 adults in the NIH-AARP		
Sample Power: Not	Diet and Health (aged 50-71 yrs) who completed questionnaires at two-time-		
Reported	points (Time 1: 1994-1996, and Time 2: 2004-2006) and were followed until		
Exposure	death or December 31, 2011. Multivariable-adjusted Cox proportional hazards		
Measurement	regression was used to estimate Hazard Ratios and 95% confidence intervals		
Self-Reported:	(CI) with self-reported television viewing and MVPA and all-cause mortality.		
Television-viewing	RESULTS: Over 6.6 years of follow-up, there were 20,104 deaths. Compared to		
time, separated	adults who watched < 3 h/day of television at both time points, mortality risk		
into categories (<3,	was 28% greater (CI:1.21,1.34) those who watched 5+ h/day at both time-		
3–4, and 5+ hours	points. Decreasing television viewing from $5 + h/day$ to $3-4 h/d$ was associated with a 15% reduction in mortality rick (CHO 80, 0.01) and decreasing to c^{2} h/day		
per day).	with a 15% reduction in mortality risk (CI:0.80, 0.91) and decreasing to <3 h/day resulted in an 12% lower risk (CI:0.79, 0.97). Conversely, adults who increased		
Measures Steps: No	their viewing time to 3-4 h/day had an 17% greater mortality risk (Cl:1.10, 1.24)		
Measures Bouts:	and those who increased to 5+ h/day had a 45% greater risk (CI:1.32, 1.58),		
No	compared to those who consistently watched <3 h/day. The lowest mortality		
NO	risk was observed in those who were consistently active and watched < 3 h/day		
	of television. CONCLUSIONS: We confirm that prolonged television viewing time		
	was associated with greater mortality in older adults and demonstrate for the		
	first time that individuals who reduced the amount of time they spent watching		
	television had lower mortality. Our findings provide new evidence to support		
	behavioral interventions that seek to reduce sedentary television viewing in		
	favor of more physically active pursuits, preferably MVPA. Given the high		
	prevalence of physical inactivity and prolonged television viewing in older		
	adults, favorable changes in these two modifiable behaviors could have		
	substantial public health impact.		
Refers to Other	Outcomes Examined: All-cause mortality: vital status determined through		
Materials: Yes	linkage with the Social Security Administration Death Master File and the		
Examine	National Death Index.		
Cardiorespiratory			
Fitness as			
Outcome: No			
Populations	Author-Stated Funding Source: Intramural Research Program at the National		
Analyzed: Adults	Cancer Institute, National Institutes of Health		
50–71, Male			

Citation: Kikuchi H, Inoue S, Odagiri Y, et al. Occupational sitting time and risk of all-cause mortality among Japanese workers. *Scand J Work Environ Health.* 2015;41(6):519-28. doi:10.5271/sjweh.3526.

Purpose: To assess the association between occupational sitting time and all-cause mortality, independently from moderate-to-vigorous PA, among Japanese adults.

Study Design: Prospective cohort studyAbstract: OBJECTIVES: Prolonged sitting is a health risk for cardiovascular diseases and all-cause mortality, independent of moderate-to-vigorous physical activity. Epidemiological evaluationSample: 36,516of occupational sitting has received little attention, even though it may have a potential limpact on workers' health. We prospectively examined the association between occupational sitting time and all-cause mortality. METHODS: Community-dwelling, Japanese workers aged 50-74 years who responded to a questionnaire in 2000-2003 were followed for all-cause mortality through 2011. Cox proportional hazard models were employed to calculate hazard ratios (HR) of all-cause mortality among middle (1- to <3 hours/day) or longer (>/=3 hours/day) occupationally sedentary subjects by gender or types of engaging industry ("primary indule (1 to <3 hours/day), or longer (≥3 hours/day), or idoustry" and "secondary or tertiary industry" ("primary industry" and "secondary or tertiary industry" ("primary industry" and "secondary or tertiary industry"). RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 Measures Bouts: NoMeasures Bouts: Noyears) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.34, 95% Cl 0.75-1.01; women: HR 1.39,55% Cl 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, hand the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality. death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause o	muependentiy nom moderate-to	-vigorous PA, among Japanese aduits.
Location: Japanmoderate-to-vigorous physical activity. Epidemiological evaluationSample: 36,516of occupational sitting has received little attention, even though itAttrition Rate: 63.28%examined the association between occupational sitting time andSample Power: Not Reportedexamined the association between occupational sitting time andSelf-Reported: Average time ofoccupational sitting time wasdetermined by multiplyingproportional hazard models were employed to calculate hazardratios (HR) of all-cause mortality among middle (1 to <3nours/day).nours/day).middle (1 to <3 hours/day).middle (1 to <3 hours/day).Measures Bouts: NoMeasures Bouts: NoMeasures Bouts: NoSeffers to Other Materials: YesExamine CardiorespiratoryFitness as Outcome: NoRefers to Other Materials: YesPopulations Analyzed: Adults40-69 (baseline), 50-74 (followup; Male	Study Design: Prospective	Abstract: OBJECTIVES: Prolonged sitting is a health risk for
Sample: 36,516of occupational sitting has received little attention, even though it may have a potential impact on workers' health. We prospectively examined the association between occupational sitting time and all-cause mortality. METHODS: Community-dwelling, Japanese workers aged 50-74 years who responded to a questionnaire in 2000-2003 were followed for all-cause mortality through 2011. Cox proportional hazard models were employed to calculate hazard ratios (HR) of all-cause mortality among middle (1 to <3 hours/day) or longer (>f=3 hours/day) or cupational sitting times steps: No Measures Bouts: Noother stepsile Measures Bouts: NoMeasures Bouts: Noworkers aged 50-74 (follow- up industry" and "secondary or tertiary industry". RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% CI 0.75-1.01; women: HR 1.03, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzei: Adults 40-69 (cohort study	
Attrition Rate: 63.28%may have a potential impact on workers' health. We prospectively examined the association between occupational sitting time and all-cause mortality. METHODS: Community-dwelling, Japanese workers aged 50-74 years who responded to a questionnaire in 2000-2003 were followed for all-cause mortality through 2011. Cox proportional hazard models were employed to calculate hazard ratios (HR) of all-cause mortality among middle (1- to <3 hours/day), or longer (>1 shours/day), middle (1 to <3 hours/day), or longer (>1 shours/day), middle (1 to <3 hours/day), or longer (>2 hours/day).middle (1 to <3 hours/day), or industry" and "secondary or tertiary industry"). RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% Cl 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% Cl 0.75-1.01; women: HR 1.03, 95% Cl 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases. <tr< td=""><td>Location: Japan</td><td></td></tr<>	Location: Japan	
Sample Power: Not Reportedexamined the association between occupational sitting time and all-cause mortality. METHODS: Community-dwelling, Japanese workers aged 50-74 years who responded to a questionnaire in 2000-2003 were followed for all-cause mortality through 2011. Cox proportional hazard models were employed to calculate hazard ratios (HR) of all-cause mortality among middle (1- to <3 hours/day) or longer (>/=3 hours/day) occupational ysedentary subjects by gender or types of engaging industry ("primary industry" and "secondary or tertiary industry". RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% CI 0.75-1.01; women: HR 10.3, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No up); MaleOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare of and Development Fund, Ministry of Health, Labor and Welfare of apan; Japan Ministry of Education, Culture, Sports, Science and	Sample: 36,516	
Exposure Measurement Self-Reported: Average time of occupational sitting time was determined by multiplying frequency and duration, categorized based on the tertile value: short (<1 hour/day), middle (1 to <3 hours/day), or longer (>3 hours/day), Measures Bouts: Noall-cause mortality. METHODS: Community-dwelling, Japanese workers aged 50-74 years who responded to a questionnaire in 2000-2003 were followed for all-cause mortality through 2011. Cox proportional hazard models were employed to calculate hazard ratios (HR) of all-cause mortality among middle (1- to <3 hours/day),or longer (>3 hours/day),or longer (>3 hours/day),or longer (>3 hours/day),or longer (>3 hours/day),or longer (>3 hours/day).all-cause mortality among middle (1- to <3 hours/day),or industry" and "secondary or tertiary industry"). RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% CI) 1.00-1.51 among men; HR 1.34, 95% CI 0.75-1.01; women: HR 10.3, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; <td>Attrition Rate: 63.28%</td> <td>may have a potential impact on workers' health. We prospectively</td>	Attrition Rate: 63.28%	may have a potential impact on workers' health. We prospectively
Self-Reported: Average time of occupational sitting time was determined by multiplying frequency and duration, 	Sample Power: Not Reported	
occupational sitting time was determined by multiplying frequency and duration, categorized based on the tertile value: short (<1 hour/day), middle (1 to <3 hours/day).	Exposure Measurement	
determined by multiplying frequency and duration, categorized based on the tertile value: short (<1 hour/day), middle (1 to <3 hours/day) or longer (>/=3 hours/day) occupationally sedentary subjects by gender or types of engaging industry ("primary industry"). RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% CI) 1.00-1.51 among men; HR 1.34, 95% CI 0.75-1.01; women: HR 1.03, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and	Self-Reported: Average time of	÷ , , , ,
frequency and duration, categorized based on the tertile value: short (<1 hour/day), middle (1 to <3 hours/day), or longer (≥3 hours/day).ratios (HR) of all-cause mortality among middle (1- to <3 hours/day) or longer (>=3 hours/day).Measures Steps: No Measures Bouts: No368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% Cl) 1.00-1.51 among men; HR 1.34, 95% Cl 0.75-1.01; women: HR 1.03, 95% Cl 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzet: Adults 40–69 (baseline), 50–74 (follow up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and	occupational sitting time was	, -
categorized based on the tertile value: short (<1 hour/day), middle (1 to <3 hours/day), or longer (≥3 hours/day).hours/day) or longer (>/=3 hours/day) occupationally sedentary subjects by gender or types of engaging industry ("primary industry" and "secondary or tertiary industry"). RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% Cl) 1.00-1.51 among men; HR 1.34, 95% Cl 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% Cl 0.75-1.01; women: HR 1.03, 95% Cl 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Outcomes Examine: All-cause Ministry of Health, Labor and Welfare; cause of death was defined according to the International Clasification of Diseases.Author-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of upan; Japan Ministry of Education, Culture, Sports, Science and	determined by multiplying	
value: short (<1 hour/day), middle (1 to <3 hours/day), or longer (≥3 hours/day).subjects by gender or types of engaging industry ("primary industry" and "secondary or tertiary industry"). RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% CI) 1.00-1.51 among men; HR 1.34, 95% CI 0.75-1.01; women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% CI 0.75-1.01; women]. No associations were mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of japan; japan Ministry of Education, Culture, Sports, Science and	frequency and duration,	, , ,
middle (1 to <3 hours/day), or longer (≥3 hours/day).industry" and "secondary or tertiary industry"). RESULTS: During 368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% Cl) 1.00-1.51 among men; HR 1.34, 95% Cl 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% Cl 0.75-1.01; women: HR 1.03, 95% Cl 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and	categorized based on the tertile	
Ionger (≥3 hours/day).368,120 person-years of follow-up (average follow-up period, 10.1 years) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% Cl) 1.00-1.51 among men; HR 1.34, 95% Cl 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% Cl 0.75-1.01; women: HR 1.03, 95% Cl 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Measures Steps: Noyears) for the 36,516 subjects, 2209 deaths were identified. Among workers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% CI) 1.00-1.51 among men; HR 1.34, 95% CI 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% CI 0.75-1.01; women: HR 1.03, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Measures Bouts: Noworkers in primary industry, longer duration of occupational sitting was significantly or marginally associated with higher mortality [HR 1.23, 95% confidence interval (95% CI) 1.00-1.51 among men; HR 1.34, 95% CI 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% CI 0.75-1.01; women: HR 1.03, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
was significantly or marginally associated with higher mortality [HR1.23, 95% confidence interval (95% CI) 1.00-1.51 among men; HR1.34, 95% CI 0.97-1.84 among women]. No associations werefound among secondary or tertiary industry workers (men: HR0.87, 95% CI 0.75-1.01; women: HR 1.03, 95% CI 0.77-1.39).CONCLUSIONS: Occupational sitting time increased all-causemortality among primary industry workers, however similarrelationships were not observed for secondary-tertiary workers.Future studies are needed to confirm detailed dose-responserelationships by using objective measures. In addition, studiesusing cause-specific mortality data would be important to clarifythe physiological underlying mechanism.Refers to Other Materials: YesExamine CardiorespiratoryFitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40-69 (baseline), 50-74 (follow- up); Maleup; Male	-	
1.23, 95% confidence interval (95% CI) 1.00-1.51 among men; HR1.34, 95% CI 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR0.87, 95% CI 0.75-1.01; women: HR 1.03, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and	Measures Bouts: No	
1.34, 95% Cl 0.97-1.84 among women]. No associations were found among secondary or tertiary industry workers (men: HR 0.87, 95% Cl 0.75-1.01; women: HR 1.03, 95% Cl 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
found among secondary or tertiary industry workers (men: HR0.87, 95% Cl 0.75-1.01; women: HR 1.03, 95% Cl 0.77-1.39).CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japansee Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
0.87, 95% CI 0.75-1.01; women: HR 1.03, 95% CI 0.77-1.39). CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40-69 (baseline), 50-74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		-
CONCLUSIONS: Occupational sitting time increased all-cause mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
mortality among primary industry workers, however similar relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
relationships were not observed for secondary-tertiary workers. Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40-69 (baseline), 50-74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Future studies are needed to confirm detailed dose-response relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzet: Adults 40-69 (baseline), 50-74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
relationships by using objective measures. In addition, studies using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
using cause-specific mortality data would be important to clarify the physiological underlying mechanism.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40-69 (baseline), 50-74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: death certificates, provided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Examine Cardiorespiratory Fitness as Outcome: Noprovided by the Japanese Ministry of Health, Labor and Welfare; cause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Fitness as Outcome: Nocause of death was defined according to the International Classification of Diseases.Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Classification of Diseases.Populations Analyzed: AdultsAuthor-Stated Funding Source: National Cancer Centre Research40–69 (baseline), 50–74 (follow- up); Maleand Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
Populations Analyzed: Adults 40–69 (baseline), 50–74 (follow- up); MaleAuthor-Stated Funding Source: National Cancer Centre Research and Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and	Fitness as Outcome: No	-
40–69 (baseline), 50–74 (follow- up); Maleand Development Fund; Ministry of Health, Labor and Welfare of Japan; Japan Ministry of Education, Culture, Sports, Science and		
up); Male Japan; Japan Ministry of Education, Culture, Sports, Science and		-
Technology	up); Male	
		Technology

Citation: Koolhaas CM, Dhana K, van Rooij FJ, et al. Sedentary time assessed by actigraphy and mortality: The Rotterdam Study. *Prev Med.* 2017;95:59-65. doi:10.1016/j.ypmed.2016.11.021.

Purpose: To examine the association between sedentary behavior assessed by actigraphy and all-cause mortality among adults.

Study Design: Prospective cohort	Abstract: Research suggests that sedentary behavior is a risk
study	factor for mortality. However, most studies rely on
Location: Netherlands	questionnaires, which are prone to reporting error. We
Sample: 1,839	examined the association between sedentary time assessed by
Attrition Rate: 10.86%	actigraphy and mortality among 1839 participants, aged 45-
Sample Power: Not Reported	98years, from the prospective population-based Rotterdam
Exposure Measurement	Study, enrolled between 2004 and 2007. Participants wore an
Device-Measured: Actigraph,	actigraph around the wrist for seven days. Sedentary time was
sedentary time (minutes per day)	evaluated continuously, per 1h/day increase, and categorically
spent in sedentary behavior	in three groups (<8, 8-11, >/=11h/day). The lowest category
determined by count-based	was used as reference. Mortality risks were examined using Cox
intensity threshold value of <199	proportional hazard models, adjusted for confounders and
counts per minute, only waking	biological risk factors. We examined the association between
hours were used, analyzed	sedentary behavior and mortality over and beyond other
continuously per 1 hour increase	activity measures (including physical activity (PA) and activities
and categorically	of daily living (ADL)) in a final model. During 11years of follow-
$(<8 h/day, 8-11 h/day, \ge 11 h/day).$	up (median: 7.5years, interquartile range: 6.6-8.3years), 212
Measures Steps: No	participants (11.5%) died. In the multivariable model, the
Measures Bouts: No	hazard ratio (HR) and 95% confidence interval (95% CI) per 1
Measures Douts. NO	more hour/day sedentary time was 1.09 (1.00, 1.18). The HR
	(95% CI) after adjustment for PA and ADL was 1.04 (0.96, 1.13).
	Participants sedentary for >/=11h/day had a higher mortality
	risk (HR: 1.80, 95% CI: 1.14, 2.84) than those sedentary
	<8h/day, in the multivariable model. After adjusting for PA and
	ADL, this association was clearly attenuated (HR: 1.50, 95% CI:
	0.93, 2.41). In conclusion, our study suggests that sedentary
	behavior is a risk factor for mortality. Further investigation is
	needed to examine whether this association is distinct from the
	effect of other measures of activity.
Refers to Other Materials: Yes	Outcomes Examined: Mortality: collected through an
Examine Cardiorespiratory Fitness	automated follow-up system with a digital linkage to the study
as Outcome: No	database to all medical records maintained by general
	practitioners, and registry of the municipality of Rotterdam.
Populations Analyzed: Adults 45-	Author-Stated Funding Source: Netherlands Organisation for
98, Male	Scientific Research. The Rotterdam Study is funded by Erasmus
	Medical Center and Erasmus University Rotterdam; the
	Netherlands Organisation for Health Research and
	Development; Research Institute for Diseases in the Elderly;
	Ministry of Education, Culture and Science; Ministry for Health,
	Welfare and Sports; and the European Commission.

Citation: Krokstad S, Ding D, Grunseit AC, et al. Multiple lifestyle behaviours and mortality, findings from a large population-based Norwegian cohort study - The HUNT Study. *BMC Public Health*. 2017;17(1):58. doi:10.1186/s12889-016-3993-x.

Purpose: To determine whether sleep, sitting time, and social participation would contribute to the concept of "lifestyle risk," we examined their associations with all-cause and cardio-metabolic mortality among adults.

mortality among adults.	
Study Design: Prospective cohort	Abstract: BACKGROUND: Lifestyle risk behaviours are responsible
study	for a large proportion of disease burden and premature mortality
Location: Norway	worldwide. Risk behaviours tend to cluster in populations. We
Sample: 36,911	developed a new lifestyle risk index by including emerging risk
Attrition Rate: 53.26%	factors (sleep, sitting time, and social participation) and examine
Sample Power: Not Reported	unique risk combinations and their associations with all-cause
Exposure Measurement	and cardio-metabolic mortality. METHODS: Data are from a large
Self-Reported: Question: "How	population-based cohort study in a Norway, the Nord-Trondelag
many hours do you usually spend	Health Study (HUNT), with an average follow-up time of 14.1
sitting down during a 24 h	years. Baseline data from 1995-97 were linked to the Norwegian
period?"; classified sitting for	Causes of Death Registry. The analytic sample comprised 36 911
more than 7 hours per day as "at	adults aged 20-69 years. Cox regression models were first fitted
risk."	for seven risk factors (poor diet, excessive alcohol consumption,
Measures Steps: No	current smoking, physical inactivity, excessive sitting, too
Measures Bouts: No	much/too little sleep, and poor social participation) separately
	and then adjusted for socio-demographic covariates. Based on
	these results, a lifestyle risk index was developed. Finally, we
	explored common combinations of the risk factors in relation to
	all-cause and cardio-metabolic mortality outcomes. RESULTS: All
	single risk factors, except for diet, were significantly associated
	with both mortality outcomes, and were therefore selected to
	form a lifestyle risk index. Risk of mortality increased as the index
	score increased. The hazard ratio for all-cause mortality increased
	from 1.37 (1.15-1.62) to 6.15 (3.56-10.63) as the number of index
	risk factors increased from one to six respectively. Among the
	most common risk factor combinations the association with
	mortality was particularly strong when smoking and/or social
	participation were included. CONCLUSIONS: This study adds to
	previous research on multiple risk behaviours by incorporating
	emerging risk factors. Findings regarding social participation and
	prolonged sitting suggest new components of healthy lifestyles
	and potential new directions for population health interventions.
Refers to Other Materials: No	Outcomes Examined: All-cause mortality and cardio-metabolic
Examine Cardiorespiratory	diseases mortality: linked to the Norwegian Causes of Death
Fitness as Outcome: No	Registry by Statistics Norway; causes of death were coded based
	on the International Classification of Diseases.
Populations Analyzed: Adults	Author-Stated Funding Source: National Health and Medical
20–69	Research Council

Original ResearchCitation: Lee J, Kuk JL, Ardern CI. The relationship between changes in sitting time and mortality in post-menopausal US women. J Public Health (Oxf). 2016a;38(2):270-8. doi:10.1093/pubmed/fdv055.Purpose: To assess the relationship between sitting time at baseline and year six of follow-up with mortality among post-menopausal women.Study Design: Prospective cohort study Location: United StatesAbstract: BACKGROUND: Prolonged sitting is linked to ucoation: United StatesSample: 77,801 Attrition Rate: 16.17%Abstract: BACKGROUND: Prolonged sitting is linked to ucoation: United StatesSample Power: Not Reported Exposure Measurement Self-Reported: Total daily sitting time assesed at baseline and at year six of follow-up by questionnaire: During a usual day and night, about how many hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).Neasures Steps: No Measures Bouts: NoIntereseed ST. and (iv) decreased ST. cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trai	Original Research		
post-menopausal US women. J Public Health (Oxf). 2016a;38(2):270-8. doi:10.1093/pubmed/fdv055.Purpose: To assess the relationship between sitting time at baseline and year six of follow-up with mortality among post-menopausal women.Study Design: Prospective cohort study Location: United StatesAbstract: BACKGROUND: Prolonged sitting is linked to various deleterious health outcomes. The alterability of the sitting time (ST)-health relationship is not fully established however and warrants study within goulations susceptible to high ST. METHODS: We assessed at baseline and at year six of follow-up by questionnaire: 'During a usual day and night, about how many hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).Measures Steps: NO Measures Bouts: NoMeasures and follow-up was and follow-up was dicator motality. Nor Conclustons ing 'lasses, or cancer mortality, conclustons for all-cause and 27% for cancer mortality, conclustons to a lasse, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death. A thealth ResearchPopulations Analyzet: Women, Adults 50-59, 60-69, 70-79, 80-89; Diabetes;Pueth Research	-	ionship botwoon changes in sitting time and mortality in	
Purpose: To assess the relationship between sitting time at baseline and year six of follow-up with mortality among post-menopausal women.Study Design: Prospective cohort study Location: United StatesAbstract: BACKGROUND: Prolonged sitting is linked to various deleterious health outcomes. The alterability of stangle Power: Not ReportedSample: 77,801 Attrition Rate: 16.17% Sample Power: Not ReportedAbstract: BACKGROUND: Prolonged sitting is not fully established however and warrants study within populations susceptible to high ST. METHODS: We assessed the mortality rates of post-menopausal women study, a 15-year prospective study of post-menopausal women aged 50-79 years, according to their change in ST between baseline and year six. A total of 77 801 participants had information at both times on which to be cross-classified into the following: (i) high ST at baseline and follow-up; (iii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% Measures Bouts: NoRefers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician and emergency room records, death certificates, autopsy reports, and corner's reports. Cause-specific mortality categorizations were based on the cause of death. Tather than the immediate or contributing cause of death.			
mortality among post-menopausal women.Study Design: Prospective cohort studyAbstract: BACKGROUND: Prolonged sitting is linked to various deleterious health outcomes. The alterability ofSample: 77,801the sitting time (ST)-health relationship is not fully established however and warrants study within populations susceptible to high ST. METHODS: We assessed at baseline and at year six of follow-up by questionnaire: 'During a usual day and night, about how many hors do you spend sitting?', participants wariable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).Measures Steps: No Measures Bouts: NoAbstract: BACKGROUND: Prolonged sitting is linked to various deleterious health outcomes. The alterability of testbished however and warrants study within populations susceptible to high ST. METHODS: We assessed at baseline and a year six of follow-up by questionnaire: 'During a usual day and night, about how many hors do you spend sitting?', participants had information at both times on which to be cross-classified into the following: (i) high ST at baseline and follow-up; (ii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% Measures Bouts: NoRefers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician and emergency room records, death certificates, autopsy reports, and corner's reports. Cause-specific mortality categorizations were based on the cause of death. Tather <b< th=""><th></th><th></th></b<>			
Study Design: Prospective cohort studyAbstract: BACKGROUND: Prolonged sitting is linked toLocation: United Statesvarious deleterious health outcomes. The alterability ofSample: 77,801the sitting time (ST)-health relationship is not fullyAttrition Rate: 16.17%populations susceptible to high ST. METHODS: WeSample Power: Not Reportedpopulations susceptible to high ST. METHODS: WeSelf-Reported: Total daily sitting timeassessed at baseline and at year six offollow-up by questionnaire: 'During asusal day and night, about how manyhors do you spend sitting?', participantswomen aged 50-79 years, according to their change in STwere initially divided into quartiles ofsitting time (<5, 6-9, 10-13, >14) toassess does-response. The sitting timevariable at baseline and follow-up wasdichotomized as 'low-to-moderate' (<9h) or 'high' (>10 h).Measures Steps: Nolower risk of all-cause and cancer mortality with change in ST. RESULTS: At theMeasures Bouts: Nolower risk of all-cause and cancer mortality. CONCLUSIONS:Refers to Other Materials: YesCutcomes Examined: Death from all-cause, cardiovascularExamine Cardiorespiratory Fitness asOutcomes Examined: Death from all-cause, cardiovasculardisease, or cancer: trained physician adjudicatorsestablished the end points from hospitalization andmergency room records, death certificates, autopsyreports, and coroner's reports. Cause-specific mortalitycategorizations were based on the cause of death rathertha of the distribute of Health Research		- · · ·	
Location: United Statesvarious deleterious health outcomes. The alterability ofSample: 77,801the sitting time (ST)-health relationship is not fullyAttrition Rate: 16.17%established however and warrants study withinSample Power: Not Reportedpopulations susceptible to high ST. METHODS: WeSelf-Reported: Total daily sitting timeassessed the mortality rates of post-menopausal womenfollow-up by questionnaire: 'During ausual day and night, about how manyhors do you spend sitting?', participantswomen aged 50-79 years, according to their change in STwere initially divided into quartiles ofsitting time (<5, 6-9, 10-13, >14) toassess does-response. The sitting timevariable at baseline and follow-up wasdichotomized as 'low-to-moderate' (<9nd follow-up; (iii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression wasused to assess the relationship between all-cause, CVDand cancer mortality with change in ST. RESULTS: At theend of follow-up; (iii) agis ST maintainers, low ST maintainers had a 51 and 48%Neasures Bouts: Nolower risk of all-cause and acncer mortality. CONCLUSIONS:These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: YesOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death. <td< th=""><th></th><th></th></td<>			
Sample:77,801Attrition Rate:16.17%Sample Power:Not ReportedExposure Measurementsetablished however and warrants study withinSelf-Reported:Total daily sitting timeassessed at baseline and at year six of follow-up by questionnaire:from the Women's Health Initiative (WHI) observational study, a 15-year prospective study of post-menopausal women aged 50-79 years, according to their change in ST between baseline and year six. A total of 77 801 participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).Measures Steps:No Measures Steps:NeMeasures Steps:NoRefers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome:Outcome:NoOutcome:NoPopulations Analyzed:Women, Adults 450-59, 60-69, 70-79, 80-89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research			
Attrition Rate: 16.17%established however and warrants study within populations susceptible to high ST. METHODS: We assessed the mortality rates of post-menopausal women from the Women's Health Initiative (WHI) observational study, a 15-year prospective study of post-menopausal women aged 50-79 years, according to their change in ST between baseline and year six. A total of 77 801 participants had information at both times on which to be cross-classified into the following: (i) high ST at baseline and follow-up; (iii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50-59, 60-69, 70-79, 80-89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research		· · · · ·	
Sample Power: Not Reportedpopulations susceptible to high ST. METHODS: WeExposure Measurementassessed the mortality rates of post-menopausal womenSelf-Reported: Total daily sitting timeassessed the mortality rates of post-menopausal womenfollow-up by questionnaire: 'During astudy, a 15-year prospective study of post-menopausalusual day and night, about how manybetween baseline and year six. A total of 77 801hors do you spend sitting?', participantsparticipants had information at both times on which to becross-classified into the following: (i) high ST at baselineand follow-up; (iii)assess does-response. The sitting time(<5, 6-9, 10-13, >14) toassess does-response. The sitting timeasd information at both times on which to bevariable at baseline and follow-up wasdichotomized as 'low-to-moderate' (<9h) or 'high' (>10 h).end of follow-up, there were 1855 deaths. Compared withMeasures Bouts: Nohigh ST maintainers, low ST maintainers had a 51 and 48%Neesures Bouts: Noend of follow-up, there were 1855 deaths. Compared withMeasures to Other Materials: YesExamine Cardiorespiratory Fitness asOutcome: Nooutcome: trained physician adjudicatorsestablished the end points from hospitalization and emergency room records, death certificates, autopsyreports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Measures Bouts: NoAuthor-Stated Funding Source: Canadian Institute of Health Research	• •	• · · · · · · · ·	
Exposure MeasurementSelf-Reported: Total daily sitting time assessed at baseline and at year six of follow-up by questionnaire: 'During a usual day and night, about how many hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).13. Study, a 15-year prospective study of post-menopausal women aged 50-79 years, according to their change in ST between baseline and year six. A total of 77 801 participants had information at both times on which to be cross-classified into the following: (i) high ST at baseline and follow-up; (ii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and cancer mortality, respectively. Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.			
Self-Reported: Total daily sitting time assessed at baseline and at year six of follow-up by questionnaire: 'During a usual day and night, about how many hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).from the Women's Health Initiative (WHI) observational study, a 15-year prospective study of post-menopausal women aged 50-79 years, according to their change in ST between baseline and year six. A total of 77 801 participants had information at both times on which to be cross-classified into the following: (i) high ST at baseline and follow-up; (ii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	• • •		
assessed at baseline and at year six of follow-up by questionnaire: 'During a usual day and night, about how many hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).study, a 15-year prospective study of post-menopausal women aged 50-79 years, according to their change in ST between baseline and year six. A total of 77 801 participants had information at both times on which to be cross-classified into the following: (i) high ST at baseline and follow-up; (iii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and cancer mortality, respectively. Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death.Populations Analyzed: Women, Adults 50-59, 60-69, 70-79, 80-89; Diabetes;Author-Stated Funding Source: Canadian Institut	-		
follow-up by questionnaire: 'During a usual day and night, about how many hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h).women aged 50-79 years, according to their change in ST between baseline and year six. A total of 77 801 participants had information at both times on which to be cross-classified into the following: (i) high ST at baseline and follow-up; (ii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and cancer mortality, respectively. Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports. and coroner's reports. Cause-specific mortality categorizations were based on the cause of death.Populations Analyzed: Women, Adults 50-59, 60-69, 70-79, 80-89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research			
 usual day and night, about how many hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes; 	-		
 hors do you spend sitting?', participants were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes; Antor-Stated Funding Source: Canadian Institute of Health Research 			
 were initially divided into quartiles of sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes; 			
 sitting time (<5, 6-9, 10-13, >14) to assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes; and follow-up; (ii) low ST at baseline and follow-up; (iii) increased ST and (iv) decreased ST. Cox regression was used to assess the relationship between all-cause, CVD and cancer mortality with change in ST. RESULTS: At the end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and cancer mortality. respectively. Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high. Outcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death. Author-Stated Funding Source: Canadian Institute of Health Research 			
 assess does-response. The sitting time variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Outcome: No Outcome: No Outcome: No Outcome: No Author-Stated Funding Source: Canadian Institute of Health Research Author-Stated Funding Source: Canadian Institute of Health Research 			
 variable at baseline and follow-up was dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No M			
 dichotomized as 'low-to-moderate' (<9 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No Measures Bouts: No Measures Bouts: No Measures Bouts: No Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high. Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Outcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death. Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes; Author-Stated Funding Source: Canadian Institute of Health Research 			
 h) or 'high' (>10 h). Measures Steps: No Measures Bouts: No end of follow-up, there were 1855 deaths. Compared with high ST maintainers, low ST maintainers had a 51 and 48% lower risk of all-cause and cancer mortality, respectively. Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high. Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: No Outcome: No Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes; Author-Stated Funding Source: Canadian Institute of Health Research 	-		
Measures Steps: Nohigh ST maintainers, low ST maintainers had a 51 and 48%Measures Bouts: Nohigh ST maintainers, low ST maintainers had a 51 and 48%Iower risk of all-cause and cancer mortality, respectively. Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	dichotomized as 'low-to-moderate' (<9	, .	
Measures Bouts: NoIower risk of all-cause and cancer mortality, respectively. Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	h) or 'high' (>10 h).	•••••••••••••••••••••••••••••••••••••••	
Reducing sitting also resulted in a protective rate of 29% for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50-59, 60-69, 70-79, 80-89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	Measures Steps: No	-	
for all-cause and 27% for cancer mortality. CONCLUSIONS: These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50-59, 60-69, 70-79, 80-89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	Measures Bouts: No		
These results highlight not only the benefit of maintaining minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50-59, 60-69, 70-79, 80-89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research			
minimal ST, but also the utility of decreasing ST in older women, if current levels are high.Refers to Other Materials: YesExamine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research		for all-cause and 27% for cancer mortality. CONCLUSIONS:	
Refers to Other Materials: YesOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research		These results highlight not only the benefit of maintaining	
Refers to Other Materials: YesOutcomes Examined: Death from all-cause, cardiovascular disease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research		minimal ST, but also the utility of decreasing ST in older	
Examine Cardiorespiratory Fitness as Outcome: Nodisease, or cancer: trained physician adjudicators established the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research		women, if current levels are high.	
Outcome: Noestablished the end points from hospitalization and emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	Refers to Other Materials: Yes	Outcomes Examined: Death from all-cause, cardiovascular	
emergency room records, death certificates, autopsy reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	Examine Cardiorespiratory Fitness as	disease, or cancer: trained physician adjudicators	
reports, and coroner's reports. Cause-specific mortality categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research	Outcome: No	established the end points from hospitalization and	
categorizations were based on the cause of death rather than the immediate or contributing cause of death.Populations Analyzed: Women, Adults 50–59, 60–69, 70–79, 80–89; Diabetes;Author-Stated Funding Source: Canadian Institute of Health Research		emergency room records, death certificates, autopsy	
than the immediate or contributing cause of death.Populations Analyzed: Women, AdultsAuthor-Stated Funding Source: Canadian Institute of50–59, 60–69, 70–79, 80–89; Diabetes;Health Research		reports, and coroner's reports. Cause-specific mortality	
Populations Analyzed: Women, AdultsAuthor-Stated Funding Source: Canadian Institute of50–59, 60–69, 70–79, 80–89; Diabetes;Health Research		categorizations were based on the cause of death rather	
50–59, 60–69, 70–79, 80–89; Diabetes; Health Research		than the immediate or contributing cause of death.	
50–59, 60–69, 70–79, 80–89; Diabetes; Health Research	Populations Analyzed: Women, Adults	Author-Stated Funding Source: Canadian Institute of	
Other; Congestive Heart Failure; Post-	50–59, 60–69, 70–79, 80–89; Diabetes;	_	
	Other; Congestive Heart Failure; Post-		
menopausal; Smoking	menopausal; Smoking		

Original Research			
-	non-linear associations between accelerometer-measured physical		
_	and all-cause mortality using segmented Cox regression. Front Physiol.		
2016b;7:272. doi:10.3389/fp			
	eraction effect between accelerometer-measured physical activity and		
•	cause mortality among adults.		
Study Design: Prospective	Abstract: Healthy adults are advised to perform at least 150 min of		
, , ,	moderate-intensity physical activity weekly, but this advice is based on		
cohort study			
Location: United States	studies using self-reports of questionable validity. This study examined		
Sample: 7,006	the dose-response relationship of accelerometer-measured physical		
Attrition Rate: 24.17%	activity and sedentary behaviors on all-cause mortality using segmented		
Sample Power: Not	Cox regression to empirically determine the break-points of the dose-		
Reported	response relationship. Data from 7006 adult participants aged 18 or		
Exposure Measurement	above in the National Health and Nutrition Examination Survey waves		
Device-Measured:	2003-2004 and 2005-2006 were included in the analysis and linked with		
Accelerometer, sedentary	death certificate data using a probabilistic matching approach in the		
time classified by	National Death Index through December 31, 2011. Physical activity and		
accelerometer count <100.	sedentary behavior were measured using ActiGraph model 7164		
Measures Steps: No	accelerometer over the right hip for 7 consecutive days. Each minute		
Measures Bouts: No	with accelerometer count <100; 1952-5724; and >/=5725 were classified		
	as sedentary, moderate-intensity physical activity, and vigorous-		
	intensity physical activity, respectively. Segmented Cox regression was		
	used to estimate the hazard ratio (HR) of time spent in sedentary		
	behaviors, moderate-intensity physical activity, and vigorous-intensity		
	physical activity and all-cause mortality, adjusted for demographic		
	characteristics, health behaviors, and health conditions. Data were		
	analyzed in 2016. During 47,119 person-year of follow-up, 608 deaths		
	occurred. Each additional hour per day of sedentary behaviors was		
	associated with a HR of 1.15 (95% CI 1.01, 1.31) among participants who		
	spend at least 10.9 h per day on sedentary behaviors, and each		
	additional minute per day spent on moderate-intensity physical activity		
	was associated with a HR of 0.94 (95% CI 0.91, 0.96) among participants		
	with daily moderate-intensity physical activity =14.1 min. Associations</td		
	of moderate physical activity and sedentary behaviors on all-cause		
	mortality were independent of each other. To conclude, evidence from		
	this study supported at least 15 min per day of moderate-intensity		
	physical activity and no more than 10.9 h per day of sedentary		
	behaviors as recommendations to reduce all-cause mortality.		
Refers to Other Materials:	Outcomes Examined: Mortality: linked using a probabilistic matching		
Yes	approach with death certificate data in the National Death Index,		
Examine	classified according to the 10th International Classification of Diseases.		
Cardiorespiratory Fitness			
as Outcome: No			
Populations Analyzed:	Author-Stated Funding Source: Not reported		
Adults ≥18			

Original Research	
Original Research	P. Ahmed HM, Blaha MJ. Joint effects of objectively-measured
-	tivity on all-cause mortality. <i>Prev Med.</i> 2016b;90(Sep):47-51.
doi:10.1016/j.ypmed.2016.06.0	
	effects of objectively measured sedentary time and moderate-to-
vigorous physical activity on all	
Study Design: Prospective	Abstract: OBJECTIVE: Examine the joint effects of objectively-
cohort study	measured sedentary time and moderate-to-vigorous physical activity
Location: United States	(MVPA) on all-cause mortality. METHODS: The present study included
Sample: 5,575	data from the 2003-2006 National Health & Nutrition Examination
Attrition Rate: 0%	Survey, with mortality follow-up data (via National Death Index)
Sample Power: Not Reported	through 2011 (N=5575U.S. adults). Sedentary time (activity
Exposure Measurement	counts/min between 0 and 99) and MVPA (activity counts/min
Device-Measured: >/=2020) were objectively measured using the ActiGraph 7164	
Accelerometer, sedentary	accelerometer. RESULTS: The median age of the participants was
time was defined as 50yrs; proportion of men was 50.2%; proportion of whites was 53.8%	
counts/min ≤ 99, total daily	18.7% for blacks; median follow-up was 81months; and 511 deaths
estimates of sedentary time	occurred over the follow-up period. After adjusting for age, gender,
was calculated (continuous).	race-ethnicity, cotinine, weight status, poverty level, C-reactive
Measures Steps: No	protein and comorbid illness (summed score of 0-8 chronic diseases),
Measures Bouts: No	and for a 1min increase in MVPA and sedentary time, both MVPA
	(HRadjusted=0.98; 95% CI: 0.96-0.99; P=0.04) and sedentary time
	(HRadjusted=1.001; 95% CI: 1.0003-1.002; P=0.008) were
	independently associated with all-cause mortality. Further, MVPA
	was associated with all-cause mortality among those with greater
	(above median) sedentary time (HRadjusted=0.95; 95% CI: 0.93-0.97;
	P<.001). Sedentary time was not associated with all-cause mortality
	among those engaging in above median levels of MVPA
	(HRadjusted=0.998; 95% CI: 0.996-1.001; P=.32), but sedentary time
	was associated with increased mortality risk among those below
	median levels of MVPA (HR=1.002; 95% CI: 1.001-1.003; P<0.001).
	CONCLUSIONS: Sedentary time and MVPA are independently
	associated with all-cause mortality. Above median sedentary time
	levels did not negate the beneficial effects of MVPA on all-cause
	mortality risk.
Refers to Other Materials:	Outcomes Examined: Mortality: participants were linked to death
Yes	certificate data from the National Death Index.
Examine Cardiorespiratory	
Fitness as Outcome: No	
Populations Analyzed: Adults	Author-Stated Funding Source: No funding source used
20–85	

Original Research			
•	Citation: Loprinzi PD, Joyner C. Accelerometer-determined physical activity and mortality in a national		
	erations by visual acuity. Prev Med. 2016(Jun)a;87:18-21.		
doi:10.1016/j.ypmed.2016.02.005			
	ctivity has a protective effect on survival among adults with visual		
impairment.			
Study Design: Prospective	Abstract: BACKGROUND: Previous research demonstrates that		
cohort study	visual impairment (VI) is associated with increased all-cause		
Location: United States	mortality risk and is also associated with reduced physical activity		
Sample: 5,278	participation. Although physical activity is reduced among those		
Attrition Rate: 0	with VI, no studies have examined the relationship between		
Sample Power: Not Reported	physical activity and all-cause mortality across different visual		
Exposure Measurement	function statuses, which is noteworthy of investigation as physical		
Device-Measured:	activity is linked with greater survival. METHODS: Data from the		
Accelerometer, sedentary	2003-2006 NHANES were employed, with physical activity assessed		
behavior was defined as activity	via accelerometry and visual function assessed using the ARK-760		
counts/min <100.	autorefractor. RESULTS: For those with normal vision, and after		
Measures Steps: No	adjustments, for every 60min increase in physical activity, normal-		
Measures Bouts: No	sighted adults had an 18% (HR=0.82; 95% CI: 0.72-0.93) reduced		
	risk of all-cause mortality. Similarly, after adjustments and for		
	every 60min increase in physical activity for those with		
	uncorrected refractive error and VI, respectively, there was a 15%		
	(HR=0.85; 95% CI: 0.72-1.00) and 35% (HR=0.65; 95% CI: 0.43-0.98)		
	reduced risk of all-cause mortality. Among all three visual status		
	groups, sedentary behavior was not associated with mortality		
	status. CONCLUSION: Among those with varying degrees of visual		
	loss, sedentary behavior was not associated with mortality, but		
	physical activity demonstrated survival benefits.		
Refers to Other Materials: Yes	Outcomes Examined: Mortality: participants were linked to death		
Examine Cardiorespiratory	certificate data from the National Death Index. Person-months of		
Fitness as Outcome: No	follow-up were calculated from the date of the interview until date		
	of death or censoring on December 31, 2011, whichever came first.		
Populations Analyzed: Adults	Author-Stated Funding Source: No funding source used		
20–85, Visually Impaired			

Citation: Martinez-Gomez D, Guallar-Castillon P, Rodriguez-Artalejo F. Sitting time and mortality in older adults with disability: A national cohort study. *J Am Med Dir Assoc.* 2016;17(10):960.e15-20. doi:10.1016/j.jamda.2016.07.016.

Purpose: To examine the association between sitting time and long-term mortality in older adults with disabilities.

Study Design: Prospective cohort study	Abstract: BACKGROUND: The progressive aging of the
Location: Spain	population has increased the number of older adults with
Sample: 2,470	disabilities. Regular physical activity has shown to improve
Attrition Rate: 9.87%	health among these individuals, but the effects of
Sample Power: Not Reported	sedentary behavior are mostly unknown. Thus, this study
Exposure Measurement Self-Reported: Sitting time, estimated by	examined the association between sitting time and mortality in older adults with disability. METHODS:
leisure time spent sitting down with the	Prospective cohort of 2470 people aged >/=60 years. In
following question: "How much time do	2000-2011, the study participants reported their sitting
you spend sitting down on weekdays?";	time and physical activity levels and were subsequently
the same question was asked for the	followed up through 2011 to ascertain mortality. RESULTS:
weekend days, average hours per day	During an average follow-up of 8.7 years, 982 deaths
seated on a typical week [(weekday	occurred. Compared with people who spent seated <4
sitting time x 5 + weekend sitting time x	hours/d, the hazard ratio (95% confidence interval) of
2)/7], classified into tertiles (<4 h/d, 4–6	mortality was 1.27 (1.07-1.51) in those seated during 4-6
h/d, >6 h/d).	hours/d and 1.55 (1.29-1.87) in those seated for >6
Measures Steps: No	hours/d. Each increment of 1 hour/day in sitting time was
Measures Bouts: No	linked to a 7% increase in mortality. Compared with active
	individuals who spent seated <4 hours/day, those who
	were inactive and spent seated >6 hours/d showed the
	highest mortality (hazard ratio 1.82, 95% confidence
	interval 1.37-2.42). CONCLUSIONS: Sitting time is
	associated with higher mortality in older people with
	disability. Interventions combining the reduction of
	sedentary behavior with increased physical activity should
	be developed and evaluated in this group of population.
Refers to Other Materials: No	Outcomes Examined: All-cause mortality: number and
Examine Cardiorespiratory Fitness as	dates of deaths were obtained by a computerized search
Outcome: No	of the National Death Index.
Populations Analyzed: Adults \ge 60,	Author-Stated Funding Source: FIS, MINECO I+D+i, FP7-
Disability (agility, mobility, restriction of	HEALTH-2012, and by the Catedra UAM de Epidemiologia
daily activities, instrumental activities of	y Control del Riesgo Cardiovascular
daily living, self-care)	

Original Research Citation: Matthews CE, Keadle SK, Troiano RP, et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am J Clin Nutr. 2016;104(5):1424-1432. **Purpose:** To describe dose response for sedentary time and light- and moderate- to vigorous-intensity activity and estimate the mortality benefits associated with replacing sedentary time with physical activity among adults. Study Design: Prospective Abstract: BACKGROUND: Moderate-to-vigorous-intensity physical cohort study activity is recommended to maintain and improve health, but the **Location:** United States mortality benefits of light activity and risk for sedentary time remain Sample: 4,840 uncertain. OBJECTIVES: Using accelerometer-based measures, we 1) described the mortality dose-response for sedentary time and light- and Attrition Rate: 23.84% moderate-to-vigorous-intensity activity using restricted cubic splines, and Sample Power: Not 2) estimated the mortality benefits associated with replacing sedentary Reported time with physical activity, accounting for total activity. DESIGN: US **Exposure Measurement** adults (n = 4840) from NHANES (2003-2006) wore an accelerometer for **Device-Measured:** </=7 d and were followed prospectively for mortality. Proportional Accelerometer, sedentary hazards models were used to estimate adjusted HRs and 95% CIs for time was defined as wear mortality associations with time spent sedentary and in light- and time with activity count moderate-to-vigorous-intensity physical activity. Splines were used to <100. graphically present behavior-mortality relation. Isotemporal models Measures Steps: No estimated replacement associations for sedentary time, and separate Measures Bouts: No models were fit for low- (<5.8 h total activity/d) and high-active participants to account for nonlinear associations. RESULTS: Over a mean of 6.6 y, 700 deaths occurred. Compared with less-sedentary adults (6 sedentary h/d), those who spent 10 sedentary h/d had 29% greater risk (HR: 1.29; 95% CI: 1.1, 1.5). Compared with those who did less light activity (3 h/d), those who did 5 h of light activity/d had 23% lower risk (HR: 0.77; 95% CI: 0.6, 1.0). There was no association with mortality for sedentary time or light or moderate-to-vigorous activity in highly active adults. In less-active adults, replacing 1 h of sedentary time with either light- or moderate-to-vigorous-intensity activity was associated with 18% and 42% lower mortality, respectively. CONCLUSIONS: Health promotion efforts for physical activity have mostly focused on moderate-to-vigorous activity. However, our findings derived from accelerometer-based measurements suggest that increasing light-intensity activity and reducing sedentary time are also important, particularly for inactive adults. **Refers to Other Outcomes Examined:** Mortality: the National Death Index. Materials: Yes Examine **Cardiorespiratory Fitness** as Outcome: No **Populations Analyzed:** Author-Stated Funding Source: No funding source used Adults ≥ 40

Citation: Matthews CE, Moore SC, Sampson J, et al. Mortality benefits for replacing sitting time with different physical activities. *Med Sci Sports Exerc.* 2015;47(9):1833-40. doi:10.1249/MSS.000000000000621.

Purpose: To determine the marginal effects of hours of sedentary behavior, exercise, and non-exercise activity on overall mortality.

exercise activity off overall morta	ancy.
Study Design: Prospective	Abstract: PURPOSE: Prolonged sitting has emerged as a risk factor
cohort study	for early mortality, but the extent of benefit realized by replacing
Location: United States	sitting time with exercise or activities of everyday living (i.e.,
Sample: 154,614	nonexercise activities) is not known. METHODS: We prospectively
Attrition Rate: 0	followed 154,614 older adults (59-82 yr) in the National Institutes of
Sample Power: Not Reported	Health-AARP Diet and Health Study who reported no major chronic
Exposure Measurement	diseases at baseline and reported detailed information about sitting
Self-Reported: Three sitting	time, exercise, and nonexercise activities. Proportional hazard
questions were asked about	models were used to estimate adjusted hazard ratios and 95%
the number of hours spent in a	confidence intervals (HR (95% confidence interval)) for mortality.
typical 24-hour period during	An isotemporal modeling approach was used to estimate
the last 12 months.	associations for replacing sitting time with specific types of physical
Measures Steps: No	activity, with separate models fit for less active and more active
Measures Bouts: No	participants to account for nonlinear associations. RESULTS: During
	6.8 yr (SD, 1.0) of follow-up, 12,201 deaths occurred. Greater sitting
	time (>/=12 vs < 5 h.d(-1)) was associated with increased risk for all-
	cause and cardiovascular mortality. In less active adults (<2 h.d(-1)
	total activity), replacing 1 h.d(-1) of sitting with an equal amount of
	activity was associated with lower all-cause mortality for both
	exercise (HR, 0.58 (0.54-0.63)) and nonexercise activities (HR, 0.70
	(0.66-0.74)), including household chores, lawn and garden work,
	and daily walking. Among more active participants (2+ h.d(-1) total
	activity), replacement of sitting time with purposeful exercise was
	associated with lower mortality (HR, 0.91 (0.88-0.94)) but not with
	nonexercise activity (HR, 1.00 (0.98-1.02)). Similar results were
	noted for cardiovascular mortality. CONCLUSIONS: Physical activity
	intervention strategies for older adults often focus on aerobic
	exercise, but our findings suggest that reducing sitting time and
	engaging in a variety of activities is also important, particularly for
	inactive adults.
Refers to Other Materials: Yes	Outcomes Examined: All-cause mortality, mortality from
Examine Cardiorespiratory	cardiovascular disease, and mortality from cancer determined
Fitness as Outcome: No	through linkage with the Social Security Administration Death
	Master File and the National Death Index.
Populations Analyzed: Adults	Author-Stated Funding Source: National Institutes of Health,
59–82, Male	National Cancer Institute

Citation: Pulsford RM, Stamatakis E, Britton AR, Brunner EJ, Hillsdon M. Associations of sitting behaviours with all-cause mortality over a 16-year follow-up: The Whitehall II study. *Int J Epidemiol.* 2015;44(6):1909-16. doi:10.1093/ije/dyv191.

Purpose: To enhance the evidence base by examining the type-specific associations of four different sitting behaviors as well as total sitting with the risk of all-cause mortality among United Kingdom adults.

duults.	
Study Design: Prospective cohort study	Abstract: BACKGROUND: Sitting behaviours have been
Location: United Kingdom	linked with increased risk of all-cause mortality
Sample: 5,132	independent of moderate to vigorous physical activity
Attrition Rate: 50.21%	(MVPA). Previous studies have tended to examine single
Sample Power: Not Reported	indicators of sitting or all sitting behaviours combined.
Exposure Measurement Self-Reported: Participants reported on average how many hours per week they spent: sitting at work, including driving or commuting, and sitting at home, by selecting from eight response categories (none, 1h, 2–5, 6–10, 11–20, 21–30, 31–40, >40); five sitting indicators were computed (work sitting, TV viewing time, non-TV leisure time sitting, total leisure time sitting, and total sitting time). Measures Steps: No Measures Bouts: No	This study aims to enhance the evidence base by examining the type-specific prospective associations of four different sitting behaviours as well as total sitting with the risk of all-cause mortality. METHODS: Participants (3720 men and 1412 women) from the Whitehall II cohort study who were free from cardiovascular disease provided information on weekly sitting time (at work, during leisure time, while watching TV, during leisure time excluding TV, and at work and during leisure time combined) and covariates in 1997-99. Cox proportional hazards models were used to investigate prospective associations between sitting time (h/week) and mortality risk. Follow-up was from date of measurement until (the earliest of) death, date of censor or July 31 2014. RESULTS: Over 81 373 person-years of follow-up (mean follow-up time 15.7 +/- 2.2 years) a total of 450 deaths were recorded. No associations were observed between any of the five sitting indicators and mortality risk, either in unadjusted models or models adjusted for covariates including MVPA. CONCLUSIONS: Sitting time was not associated with all-cause mortality
	Sitting time was not associated with all-cause mortality risk. The results of this study suggest that policy makers and clinicians should be cautious about placing emphasis on sitting behaviour as a risk factor for mortality that is distinct from the effect of physical activity.
Refers to Other Materials: No	Outcomes Examined: Mortality: established through the
Examine Cardiorespiratory Fitness as	national mortality register kept by the National Health
Outcome: No	Service Central Registry.
Populations Analyzed: Adults 35–55	Author-Stated Funding Source: Medical Research Council, British Heart Foundation, Stroke Association, National Heart Lung and Blood Institute, and National Institute on Aging

Original ResearchCitation: Schmid D, Ricci C, Baumeister SE, Leitzmann MF. Replacing sedentary time with physical
activity in relation to mortality. Med Sci Sports Exerc. 2016;48(7):1312-9.
doi:10.1249/MSS.00000000000913.Purpose: To explore whether reallocating 30 min*d⁻¹ from one activity behavior to an equal amount
of time spent in another activity behavior is associated with mortality from any cause, cardiovascular
disease, or cancer among adults.Study Design: Prospective
cohort studyAbstract: INTRODUCTION: Data evaluating mortality benefit from
replacing sedentary time with physical activity are sparse. We

Study Design: Prospective	Abstract: INTRODUCTION: Data evaluating mortality benefit from
cohort study	replacing sedentary time with physical activity are sparse. We
Location: United States	explored reallocating time spent in sedentary behavior to physical
Sample: 3,702	activity of different intensities in relation to mortality risk.
Attrition Rate: 0.19%	METHODS: Women and men age 50-85 yr from the National
Sample Power: Not Reported	Health and Nutrition Examination Survey 2003-2004 and 2005-
Exposure Measurement	2006 cycles with follow-up through December 31, 2011, were
Device-Measured:	included. Sedentary time and physical activity were assessed using
Accelerometer, sedentary time	an ActiGraph accelerometer. Isotemporal substitution models
defined as <100 counts per	were used to estimate the effect of replacing one activity
minute.	behavior with another activity behavior for the same amount of
Measures Steps: No	time while holding total accelerometer wear time constant.
Measures Bouts: No	RESULTS: During a mean follow-up of 6.35 yr, 697 deaths from any
	cause occurred. Replacing 30 min of sedentary time with an equal
	amount of light activity was associated with 14% reduced risk of
	mortality (multivariable-adjusted hazard ratio (HR), 0.86; 95%
	confidence interval (CI), 0.83-0.90). Replacement of sedentary
	time with moderate to vigorous activity was related to 50%
	mortality risk reduction (HR, 0.50; 95% Cl, 0.31-0.80). We also
	noted a 42% reduced risk of mortality when light physical activity
	was replaced by moderate to vigorous activity (HR, 0.58; 95% CI,
	0.36-0.93). CONCLUSION: Replacing sedentary time with an equal
	amount of physical activity may protect against preterm mortality.
	Replacement of light physical activity with moderate to vigorous
	activity is also associated with protection from premature
	mortality.
Refers to Other Materials: Yes	Outcomes Examined: Mortality: based on probabilistic match
Examine Cardiorespiratory	between the National Health and Nutrition Examination Survey
Fitness as Outcome: No	and death certificate records of the National Death Index.
Populations Analyzed: Adults	Author-Stated Funding Source: No funding source used
50–85, Male	

Original Pasaarah	
Original Research	Leitzmann MF. Associations of objectively assessed physical activity and
	se mortality in US adults: The NHANES study. <i>PLoS One.</i>
	.0.1371/journal.pone.0119591.
	her higher levels of PA can alleviate the apparent adverse effect of
-	
	rtality from any cause among adults.
Study Design: Prospective	Abstract : BACKGROUND: Sedentary behavior is related to increased
cohort study	mortality risk. Whether such elevated risk can be offset by enhanced
Location: United States	physical activity has not been examined using accelerometry data.
Sample: 1,677	MATERIALS AND METHODS: We examined the relations of sedentary
Attrition Rate: 33.19%	time and physical activity to mortality from any cause using
Sample Power: Not	accelerometry data among 1,677 women and men aged 50 years or older
Reported	from the National Health and Nutrition Examination Survey (NHANES)
Exposure Measurement	2003-2004 cycle with follow-up through December 31, 2006. RESULTS:
Device-Measured:	During an average follow-up of 34.67 months and 4,845.42 person-years,
Accelerometer, sedentary	112 deaths occurred. In multivariate Cox proportional hazard models,
time was defined as <100	greater sedentary time (>/= median of 8.60 hours/day) was associated
counts per minute.	with increased risk of mortality from any cause (relative risk (RR) = 2.03; 05% confidence interval (CI) = 1.00, 2.81). Low level of moderate to
Measures Steps: No	95% confidence interval (CI) = $1.09-3.81$). Low level of moderate to
Measures Bouts: No	vigorous physical activity (< median of 6.60 minutes/day) was also
	related to enhanced all-cause mortality risk (RR = 3.30; 95% CI = 1.33-
	8.17). In combined analyses, greater time spent sedentary and low levels
	of moderate to vigorous physical activity predicted a substantially elevated all-cause mortality risk. As compared with the combination of a
	low sedentary level and a high level of moderate to vigorous physical
	activity, the risks of mortality from all causes were 4.38 (95% Cl = 1.26-
	15.16) for low levels of both sedentary time and physical activity, 2.79
	(95% Cl = 0.77-10.12) for greater time spent sedentary and high physical
	activity level, and 7.79 (95% CI = 2.26-26.82) for greater time spent sedentary and low physical activity level. The interaction term between
	sedentary time and moderate to vigorous physical activity was not
	statistically significant (p = 0.508). CONCLUSIONS: Both high levels of
	sedentary time and low levels of moderate to vigorous physical activity
	are strong and independent predictors of early death from any cause.
	Whether a high physical activity level removes the increased risk of all-
	cause mortality related to sedentariness requires further investigation.
Refers to Other	Outcomes Examined: Mortality: sources included the Social Security
Materials: No	Administration, Centers for Medicare & Medicaid Services, and death
Examine	certificates.
Cardiorespiratory Fitness	
as Outcome: No	
Populations Analyzed:	Author-Stated Funding Source: No funding source used
Adults ≥50	Aution-Stateu Fullung Source. No fullung Source used
πααπο 200	

Original Research

Citation: Shuval K, Finley CE, Barlow CE, Nguyen BT, Njike VY, Gabriel KP. Independent and joint effects of sedentary time and cardiorespiratory fitness on all-cause mortality: The Cooper Center Longitudinal Study. *BMJ Open.* 2015;5(10):e008956.

Purpose: To examine the independent and joint effects of sedentary time and fitness on all-cause mortality among adults.

Study Design: Prospective cohortAbstract: OBJECTIVES: To examine the independent and joint effects of sedentary time and cardiorespiratory fitness (fitness) on all-cause mortality. DESIGN, SETTING, PARTICIPANTS: A prospective study of 3141 Cooper Center Longitudinal Study participants. Participants provided information on television (TV) viewing and Car time in 1982 and completed a maximal exercise test during a 1-year time in 1982 and completed a maximal exercise test during a 1-year time frame; they were then followed until mortality or through 2010. TV viewing, car time, total sedentary time and fitness were the primary exposures and all-cause mortality was the outcome. The relationship between the exposures and outcome was examined utilising Cox proportional hazard models. RESULTS: A total of S81 deaths occurred over a median follow-up period of 28.7 years (SD=9.6), 86.5% were men and their mean body mass index was 24.6 (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time and covariates (p=0.02). The effects of total sedentary time and covariates once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (<=10 h/week), being sedentary time and caraites were admortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63]; however, once fitness and covariates were taken into account this relationship did not reach statistical significanty related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory Fitness as Outcome: NoOutcomes Examined: All-cause mortality: National Death	mortality among adults.	
Location: United Stateson all-cause mortality. DESIGN, SETTING, PARTICIPANTS: A Sample 23,141Attrition Rate: 14.55%mortality. DESIGN, SETTING, PARTICIPANTS: A participants. Participants provided information on television (TV) viewing and car time in 1982 and completed a maximal exercise test during a 1-year time frame; they were then followed until mortality or through 2010. TV viewing, car time, total sedentary time and fitness were the primary exposures and all-cause mortality was the outcome. The relationship between the exposures and outcome was examined utilising Cox proportional hazard models. RESULTS: A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=9.6), 86.5% were men and their mean body mass index was 24.6 (SD=3.0). Multivariable analyses revealed a significant enter relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (<=10 h/week), being sedentary for >/=23 h weekly increased mortality risk by 29% Without controlling for fitness (HR=1.29, 95% Cl 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% Cl 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly risk alex into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohrd.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death <br< th=""><th>Study Design: Prospective cohort</th><th>Abstract: OBJECTIVES: To examine the independent and joint</th></br<>	Study Design: Prospective cohort	Abstract: OBJECTIVES: To examine the independent and joint
Sample: 3,141prospective study of 3141 Cooper Center Longitudinal Study participants. Participants provided information on television (TV) viewing and car time in 1982 and completed a maximal exercise test during a 1-year time frame; they were then followed until mortality or through 2010. TV viewing, car time, total sedentary time and fitness were the primary exposures and all-cause mortality was the outcome. The relationship between the exposures and outcome was examined utilising Cox proportional hazard models. RESULTS: A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=4.4). At baseline, participants for the combined sedentary time are: 11, 16, 23 h/week), TV viewing time (0–4, ≤ 11h/week). TV viewing time (0–4, ≤ 10 h/week). TV viewing time (0–4, ≤ 0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship between total sedentary time and rovariates (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 1.03 to 1.63); however, once fitness into account. Incre	•	
Attrition Rate: 14.55% Sample Power: Not Reportedparticipants. Participants provided information on television (TV) viewing and car time in 1982 and completed a maximal exercise test during a 1-year time frame; they were then followed until mortality or through 2010. TV viewing, car time, total sedentary time and fitness were the primary exposures and all-cause mortality was the outcome. The relationship between the exposures and outcome was examined utilising Cox proportional hazard models. RESULTS: A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=9.6), 86.5% were men and their mean body mass index was 24.6 (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time on increased mortality risk did not quite reach statistical significant linear relationship between increased for (p=0.05). When examining this relationship categorically, in comparison to the reference category (<10.1 //week), being sedentary for >/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship id not reach statistical significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronunced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: Na		-
Sample Power: Not Reported(TV) viewing and car time in 1982 and completed a maximal exercise test during a 1-year time frame; they were then followed until mortality or through 2010. TV viewing, car time, total sedentary time and fitness were the primary exposures and all-cause mortality was the outcome. The relationship between the exposures and outcome was examined utilising Cox proportional hazard models. RESUITS: A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (10 h/week), being<br/ sedentary for >/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk less pronounced when fitness is taken into account, in this cohort.Refers to Other Materials: Yes Examine Cardioresp	•	
 Exposure Measurement Self-Reported: Sedentary behavior, reported time spent viewing TV and commuting in a car; hours of car driving and TV viewing per week were considered separate exposure variables; combined amount of sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0–4, 5–7, 8–10, and ≥ 11h/week). TV viewing time (0–3, 4–7, 8–10, and ≥ 11h/week). TV viewing time (0–3, 4–7, 8–12, ≥13 h/week). Measures Bouts: No Measures Bouts: No Measures Bouts: No Refers to Other Materials: Yes Examine Cardiorespiratory Fitness Arterials: Yes Examine Cardiorespiratory Fitness Automes Materials: Yes Examine Cardiorespiratory Fitness 	Attrition Rate: 14.55%	
Self-Reported: Sedentary behavior, reported time spent viewing TV and commuting in a car; hours of car driving and TV viewing per week were considered separate exposure variables; combined amount of sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0-4, 5-7, 8-10, and ≥ 11h/week). TV viewing time (0-3, 4-7, 8-12, ≥13 h/week).followed until mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time and covariates (p=0.02). The effects of total sedentary time and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (Measures Bouts: Nosignificant linear should ind reach statistical significantly increased mortality risk by 29% without controlling for fitness and covariates were taken into account this relationship idd not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between Tviewing and mortality was not significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.	Sample Power: Not Reported	
 reported time spent viewing TV and commuting in a car; hours of car driving and TV viewing per week were considered separate exposure variable; combined amount of sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0–4, 5–7, 8–10, and ≥ 11h/week), TV viewing time (0–3, 4–7, 8–12, ≥13 h/week). Measures Bouts: No Measures Bouts:	Exposure Measurement	
commuting in a car; hours of car driving and TV viewing per week were considered separate exposure variables; combined amount of sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0-4, 5-7, 8-10, and ≥ 11h/week), TV viewing time (0-3, 4-7, 8-12, ≥13 h/week).and all-cause mortality was the outcome. The relationship between the exposures and outcome was examined utilising Cox proportional hazard models. RESULTS: A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (Measures Bouts: Noweakly significantly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 0.30 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending 10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National D	Self-Reported: Sedentary behavior,	
driving and TV viewing per week were considered separate exposure variables; combined amount of sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0-4, 5-7, 8-10, and ≥ 11h/week), TV viewing time (0-3, 4-7, 8-12, ≥13 h/week).between the exposures and outcome was examined utilising Cox proportional hazard models. RESULTS: A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=4.4). At baseline, participants' mean age was 45.0 years (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category ((<a>10 h/week), being sedentary for >/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% Cl 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% Cl 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of	reported time spent viewing TV and	
 Were considered separate exposure variables; combined amount of sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0–4, 5–7, 8–10, and ≥ 11h/week), TV viewing time (0–3, 4–7, 8–10, and ≥ 11h/week). TV viewing time (0–3, 4–7, 8–12, ≥13 h/week). Measures Steps: No Measures Bouts: No Cox proportional hazard models. RESULTS: A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=9.6), 86.5% were men and their mean body mass index was 24.6 (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (Measures Bouts: No Measures Bouts: No Measures Comparison to the reference category (Measures Bouts: No Measures Bouts: No	commuting in a car; hours of car	and all-cause mortality was the outcome. The relationship
 variables; combined amount of sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0-4, 5-7, 8-10, and ≥ 11h/week), TV viewing time (0-3, 4-7, 8-12, ≥13 h/week). Measures Bouts: No Measures Bouts: N	driving and TV viewing per week	between the exposures and outcome was examined utilising
 sedentary time (sum of TV viewing and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0–4, 5–7, 8–10, and ≥ 11h/week), TV viewing time (0–3, 4–7, 8–10, and ≥ 11h/week). TV viewing time (0–3, 4–7, 8–12, ≥13 h/week). Measures Steps: No Measures Steps: No Measures Bouts: No Measures Bouts: No Measures To Other Materials: Yes Examine Cardiorespiratory Fitness Geffers to Other Materials: Yes Examine Cardiorespiratory Fitness Geffers to Other Materials: Yes Examine Cardiorespiratory Fitness Sedentary Steps: No Comparison to the reference care mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality risk, even when taking fitness into account, in this cohort. 	were considered separate exposure	Cox proportional hazard models. RESULTS: A total of 581
and car commuting time) was regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0-4, 5-7, 8-10, and ≥ 11h/week), TV viewing time (0-3, 4-7, 8-12, ≥13 h/week).(SD=9.6), 86.5% were men and their mean body mass index was 24.6 (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category ((>10 h/week), being sedentary for >/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality information.	variables; combined amount of	deaths occurred over a median follow-up period of 28.7 years
regarded as an additional exposure variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0-4, 5-7, 8-10, and ≥ 11h/week), TV viewing time (0-3, 4-7, 8-12, ≥13 h/week).was 24.6 (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (=10 h/week), being<br/ sedentary for >/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% Cl 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% Cl 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.	sedentary time (sum of TV viewing	
 variable; quartile cut-points for the combined sedentary time are: 11, 16, 23 h/week, car time (0–4, 5–7, 8–10, and ≥ 11h/week), TV viewing time (0–3, 4–7, 8–12, ≥13 h/week). Measures Steps: No Measures Bouts: No Measures Steps: No Measures Bouts: No Measures Steps: No Measures Bouts: No Measures Bouts: No Measures Steps: No Measures Bouts: No Measures Display to the fully adjusted model. The association bet	and car commuting time) was	
combined sedentary time are: 11, 16, 23 h/week, car time (0-4, 5-7, 8-10, andlower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (10 h/week), being<br/ sedentary for >/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.	regarded as an additional exposure	
 16, 23 h/week, car time (0–4, 5–7, 8–10, and ≥ 11h/week), TV viewing time (0–3, 4–7, 8–12, ≥13 h/week). Measures Steps: No Measures Bouts: Na M	variable; quartile cut-points for the	-
 8-10, and ≥ 11h/week), TV viewing time (0-3, 4-7, 8-12, ≥13 h/week). Measures Steps: No Measures Bouts: No Measures Measures Bouts: No Measures Bouts: N	combined sedentary time are: 11,	
 ≥ 11h/week), TV viewing time (0–3, 4–7, significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (<!--=10 h/week), being sedentary for -->/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% Cl 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% Cl 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort. Refers to Other Materials: Yes Examine Cardiorespiratory Fitness 	16, 23 h/week, car time (0–4, 5–7,	
 4−7, (p=0.05). When examining this relationship categorically, in comparison to the reference category (<!--=10 h/week), being sedentary for -->/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort. Refers to Other Materials: Yes Examine Cardiorespiratory Fitness 	8–10, and	
 8–12, ≥13 h/week). Measures Steps: No Measures Bouts: No without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort. Refers to Other Materials: Yes Examine Cardiorespiratory Fitness 	\geq 11h/week), TV viewing time (0–3,	
Measures Steps: No Measures Bouts: Nosedentary for >/=23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.	4–7,	
Measures Bouts: Nowithout controlling for fitness (HR=1.29, 95% Cl 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% Cl 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.	8–12, ≥13 h/week).	
however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.	Measures Steps: No	
this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: Yes Examine Cardiorespiratory FitnessOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.	Measures Bouts: No	
95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
adjusted model. The association between TV viewing and mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
mortality was not significant. CONCLUSIONS: The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
pronounced when fitness is taken into account. Increased car time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
time, but not TV viewing, is significantly related to higher mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
mortality risk, even when taking fitness into account, in this cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National Death Index was the primary source of mortality information.		
cohort.Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National DeathExamine Cardiorespiratory FitnessIndex was the primary source of mortality information.		
Refers to Other Materials: YesOutcomes Examined: All-cause mortality: National DeathExamine Cardiorespiratory FitnessIndex was the primary source of mortality information.		
Examine Cardiorespiratory Fitness Index was the primary source of mortality information.		
as Outcome: No		Index was the primary source of mortality information.
	as Outcome: No	
Populations Analyzed: Adults ≥20 Author-Stated Funding Source: National Institutes of Health	Populations Analyzed: Adults ≥20	Author-Stated Funding Source: National Institutes of Health

Original Research

Citation: Stamatakis E, Rogers K, Ding D, et al. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: A prospective study of 201,129 mid-aged and older adults. *Int J Behav Nutr Phys Act.* 2015;12(Sep):121. doi: 10.1186/s12966-015-0280-7.

Purpose: To examine the estimated replacement effects of sedentary behavior and other timedependent behaviors on all-cause mortality among adults.

dependent behaviors on an-cat	
Study Design: Prospective	Abstract: BACKGROUND: Sedentary behaviour, sleeping, and physical
cohort study	activity are thought to be independently associated with health
Location: Australia	outcomes but it is unclear whether these associations are due to the
Sample: 201,129	direct physiological effects of each behaviour or because, across a
Attrition Rate: 24.70%	finite 24-hour day, engagement in one behavior requires
Sample Power: Not Reported	displacement of another. The aim of this study was to examine the
Exposure Measurement	replacement effects of sedentary behaviour (total sitting,
Self-Reported: 45 and Up	television/computer screen time combined), sleeping, standing,
Study baseline questionnaire:	walking, and moderate-to-vigorous physical activity on all-cause
sitting, screen time (watching	mortality using isotemporal substitution modelling. METHODS:
television or using a	Longitudinal analysis (4.22 +/- 0.9 years follow-up/849,369 person-
computer), standing and	years) of 201,129 participants of the 45 and Up study aged >/=45
sleeping variables, sitting	years from New South Wales, Australia. RESULTS: Seven thousand
time per day (0–2, 3–4, 5–6,	four hundred and sixty deaths occurred over follow-up. There were
≥7 hours).	beneficial associations for replacing total sitting time with standing
Measures Steps: No	(per-hour HR: 95 % CI: 0.95, 0.94-0.96), walking (0.86, 0.81-0.90),
Measures Bouts: No	moderate-to-vigorous physical activity (0.88, 0.85-0.90), and sleeping
	in those sleeping = 7 h/day (0.94, 0.90-0.98). Similar associations</th
	were noted for replacing screen time. Replacing one hour of walking
	or moderate-to-vigorous physical activity with any other activity class
	was associated with an increased mortality risk by 7-18%. Excluding
	deaths in the first 24 months of the follow up and restricting analyses
	to those who were healthy at baseline did not materially change the
	above observations. CONCLUSION: Although replacing sedentary
	behaviour with walking and moderate-to-vigorous physical activity
	are associated with the lowest mortality risk, replacements with
	equal amounts of standing and sleeping (in low sleepers only) are
	also linked to substantial mortality risk reductions.
Refers to Other Materials:	Outcomes Examined: All-cause mortality: linked to the baseline data
Yes	from the 45 and Up Study by the Centre for Health Record Linkage.
Examine Cardiorespiratory	
Fitness as Outcome: No	
Populations Analyzed: Adults	Author-Stated Funding Source: Australian National Health and
≥45	Medical Research Council, UK National Institute for Health Research

Original Research

Citation: van der Ploeg HP, Moller SV, Hannerz, H, van der Beek AJ, Holtermann A. Temporal changes in occupational sitting time in the Danish workforce and associations with all-cause mortality: Results from the Danish work environment cohort study. *Int J Behav Nutr Phys Act.* 2015;12:71. doi:10.1186/s12966-015-0233-1.

Purpose: To determine temporal changes in occupational sitting time between 1990 and 2010 and the association and possible dose-response relationship between occupational sitting time and all-cause mortality among adults.

cause mortality among adults.	
Study Design: Prospective	Abstract: BACKGROUND: Prolonged sitting has been negatively
cohort study	associated with a range of non-communicably diseases. However,
Location: Denmark	the role of occupational sitting is less clear, and little is known on
Sample: N/A	the changes of occupational sitting in a working population over
Attrition Rate: 0	time. The present study aimed to determine 1) temporal changes
Sample Power: Not Reported	in occupational sitting time between 1990 and 2010 in the Danish
Exposure Measurement	workforce; 2) the association and possible dose-response
Self-Reported: Occupational	relationship between occupational sitting time and all-cause
sitting time, assessed in the	mortality. METHODS: This study analysed data from the Danish
Danish Work Environment	Work Environment Cohort Study (DWECS), which is a cohort study
Cohort Study using the question	of the Danish working population conducted in five yearly intervals
"Does your job involve sitting?"	between 1990 and 2010. Occupational sitting time is self-reported
with pre-set answer categories	in the DWECS. To determine the association with all-cause
("Almost all the time";	mortality, the DWECS was linked to the Danish Register of Causes
"approximately 3/4 of the	of Death via the Central Person Register. RESULTS: Between 1990
time"; "approximately 1/2 of	and 2010 the proportion of the Danish workforce who sat for at
the time"; "approximately 1/4	least three quarters of their work time gradually increased from
of the time"; "rarely"; "never");	33.1 to 39.1%. All-cause mortality analyses were performed with
combined with self-reported	149,773 person-years of observation and an average follow-up of
actual working hours by	12.61 years, during which 533 deaths were registered. None of the
multiplying by coefficients	presented analyses found a statistically significant association
0.875, 0.75, 0.5, 0.25, 0.125, 0.	between occupational sitting time and all-cause mortality. The
Separated into sedentary	hazard ratio for all-cause mortality was 0.97 (95% CI: 0.79; 1.18)
workers (≥ 24 hr/wk) and less	when >/=24 hr/wk occupational sitting time was compared to <24
sedentary workers (<24 hr/wk).	hr/wk for the 1990-2005 waves. CONCLUSIONS: Occupational
Measures Steps: No	sitting time increased by 18% in the Danish workforce, which
Measures Bouts: No	seemed to be limited to people with high socio-economic status. If
	this increase is accompanied by increases in total sitting time, this
	development has serious public health implications, given the
	detrimental associations between total sitting time and mortality.
	The current study was inconclusive on the specific role that
	occupational sitting might play in the increased all-cause mortality
	risk associated with the total volume of sitting.
Refers to Other Materials: No	Outcomes Examined: All-cause mortality: linked to the Danish
Examine Cardiorespiratory	Register of Causes of Death via the Central Person Register.
Fitness as Outcome: No	
Populations Analyzed: Adults ≥	Author-Stated Funding Source: Not reported
21; Social Class I (highest), Social	
Class II, Social Class III, Social	

Class IV, Social Class V (lowest);	
Normal/Healthy Weight (BMI:	
18.5–24.9), Overweight (BMI:	
25-29.9), Obese (BMI: 30 and	
above); Smoking; Male	

Original Research	
-	S, Zheng, W, Sonderman, J, et al. Combined Impact of Health Behaviors on
	nericans. Am J Prev Med. 2016;51(3):344-55.
	ombined association of modifiable lifestyle factors with all-cause and
cause-specific mortality am	
Study Design: Prospective	Abstract: INTRODUCTION: African Americans and low-income whites
	have higher mortality than the U.S. general population. This study
cohort study	
Location: United States	prospectively investigated the combined influence of major lifestyle
Sample: 79,101	factors and poverty on mortality in this vulnerable population. METHODS: Data were collected in 2002-2009 from 79,101 Southern
Attrition Rate: 6.64%	
Sample Power: Not	Community Cohort Study participants, of which 67% were African
Reported	American and 55% had household incomes <\$15,000. Mortality
Exposure Measurement	outcomes were identified from the National Death Index though
Self-Reported: Sedentary	December 31, 2011 (data analyzed in 2014-2015). Healthy behavior
behavior, assessed by	scores were created based on tobacco smoking, alcohol intake, diet,
asking about amount of	physical activity, and sedentary time. The primary analysis was
time/day spent sitting.	performed based on the score created by counting each participant as
Summary sedentary	having met/not met public health guidelines for each behavior. RESULTS:
behavior variable was	Healthy behavior scores were associated with reduced cancer,
created as the average	cardiovascular disease, and all-cause mortality. Associations were
sitting time/day over the	stronger for whites than African Americans: hazard ratios for all-cause
course of the week.	mortality comparing participants meeting four or five guidelines versus
Measures Steps: No	participants meeting zero were 0.41 (95% CI=0.30, 0.55) for African
Measures Bouts: No	American men; 0.36 (95% CI=0.24, 0.55) for white men; 0.46 (95%
	CI=0.36, 0.59) for African American women; and 0.27 (95% CI=0.18, 0.43)
	for white women. The association between healthy lifestyle and all-cause
	mortality was weaker among those with incomes <\$15,000 than those
	with higher income, particularly in men (p<0.05 for interaction).
	CONCLUSIONS: This study demonstrates the importance of health
	behaviors on mortality among all groups, but highlights the need for
	additional research to identify factors contributing to high risk of
	mortality among low-income and African American populations.
Refers to Other	Outcomes Examined: Mortality: obtained via linkage to the Social
Materials: Yes	Security Administration's Death Master File. Cause of death was
Examine	ascertained from the National Death Index and grouped according to the
Cardiorespiratory Fitness	ICD-10 codes as cardiovascular diseases, cancer, and all other causes.
as Outcome: No	
Populations Analyzed:	Author-Stated Funding Source: National Cancer Institute at National
White; Black or African	Institutes of Health (including special allocations from the American
American; Adults 40–79;	Recovery and Reinvestment Act), Vanderbilt Molecular and Genetic
Low-Income; Male	Epidemiology of Cancer

Original ResearchCitation: Wijndaele K, Sharp SJ, Wareham NJ, Brage S. Mortality risk reductions from substituting screen-time by discretionary activities. Med Sci Sports Exerc. 2017;Jan 19. doi: 10.1249/MSS.00000000001206.Purpose: To estimate the differential mortality risk reductions associated with substituting leisur screen time with different discretionary PA types among adults.Study Design: Prospective cohort studyAbstract: PURPOSE: Leisure-screen-time, including TV viewing, is associated with increased mortality risk. We estimated the all-cause mortality risk reductions associated with substituting leisure-screen- time, with different discretionary physical activity types, and the change in	re
screen-time by discretionary activities. Med Sci Sports Exerc. 2017;Jan 19. doi:10.1249/MSS.00000000001206.Purpose: To estimate the differential mortality risk reductions associated with substituting leisur screen time with different discretionary PA types among adults.Study Design: Prospective cohort studyAbstract: PURPOSE: Leisure-screen-time, including TV viewing, is associated with increased mortality risk. We estimated the all-cause mortality risk reductions associated with substituting leisure-screen-time	re
10.1249/MSS.00000000000000000000000000000000000	
Purpose: To estimate the differential mortality risk reductions associated with substituting leisur screen time with different discretionary PA types among adults.Study Design: Prospective cohort studyAbstract: PURPOSE: Leisure-screen-time, including TV viewing, is associated with increased mortality risk. We estimated the all-cause mortality risk reductions associated with substituting leisure-screen-Location: Unitedmortality risk reductions associated with substituting leisure-screen-	
screen time with different discretionary PA types among adults.Study Design:Abstract: PURPOSE: Leisure-screen-time, including TV viewing, is associated with increased mortality risk. We estimated the all-cause mortality risk reductions associated with substituting leisure-screen-Location: Unitedmortality risk reductions associated with substituting leisure-screen-	
Study Design: Prospective cohort studyAbstract: PURPOSE: Leisure-screen-time, including TV viewing, is associated with increased mortality risk. We estimated the all-cause mortality risk reductions associated with substituting leisure-screen-Location: UnitedMostract: PURPOSE: Leisure-screen-time, including TV viewing, is associated with increased mortality risk. We estimated the all-cause mortality risk reductions associated with substituting leisure-screen-time	time
Prospective cohort studyassociated with increased mortality risk. We estimated the all-causeLocation: Unitedmortality risk reductions associated with substituting leisure-screen-	time
Location: United mortality risk reductions associated with substituting leisure-screen-	time
	unic
Sample: 423,659mortality incidence associated with different substitution scenarios.	
Attrition Rate: 16.28% METHODS: 423,659 UK Biobank participants, without stroke, myocar	leib
Sample Power: Not infarction or cancer history, were followed for 7.6 (1.4) (median (IQR	
	,,
Exposure Measurementcomputer use) and leisure/home activities, categorised as daily-lifeSelf-Reported:activities (walking for pleasure; light DIY; heavy DIY) and structured	
	n
Questionnaire, numberexercise (strenuous sports; other exercises). Iso-temporal substitutionof hours spent watchingmodelling in Cox regression provided hazard ratios (95% confidence)	11
TV and number of hours intervals) for all-cause mortality when substituting screen-time (30	
spent using the minutes/day) with different discretionary activity types of the same	
computer (not including duration. Potential impact fractions (PIFs) estimated the proportional	d.
	•
	28
typical day. The sum of both estimates wasscenarios. RESULTS: During 3,202,105 person-years of follow-up, 8,9participants died. Each 30 minute/day difference in screen-time was	20
calculated to estimate associated with lower mortality hazard when modelling substitution	of
average daily screen screen-time by an equal amount of daily-life activities (0.95 (0.94-0.9	
time (hours/day). Screen as well as structured exercise (0.87 (0.84-0.90)). Re-allocations from	• 11)
time was truncated at screen-time into specific activity subtypes suggested different reduct	ions
9 hours/day. in mortality hazard (walking for pleasure (0.95 (0.92-0.98)), light DIY	
Measures Steps: No (0.94-1.00)), heavy DIY (0.93 (0.90-0.96)), strenuous sports (0.87 (0.7	
Measures Bouts: No 0.95)), other exercises (0.88 (0.84-0.91))). The lowest hazard estimat	
were found when modelling replacement of TV viewing. PIFs ranged	
4.3% (30 minute/day substitution of screen-time into light DIY) to 14	
(TV viewing into strenuous sports). CONCLUSION: Substantial public	1370
health benefits could be gained by replacing small amounts of screer	۱-
time with daily-life activities and structured exercise. Daily-life activities	
may provide feasible screen-time alternatives, if structured exercise	
initially too ambitious.	
Refers to Other Outcomes Examined: Mortality: followed up for vital status by linkage	ge to
Materials: No national datasets (NHS Information Centre and Scottish Morbidity	
Examine Record).	
Cardiorespiratory	
Fitness as Outcome: No	
Populations Analyzed: Author-Stated Funding Source: British Heart Foundation and the Me	dical
Adults 40–69 Research Council	

Table 5. Original Research Bias Assessment Chart

	Ding, 2015	Edwards, 2016	Ensrud, 2014	Evenson, 2017	Evenson, 2016	Fishman, 2016	Grunseit 2017
(???) = Can't Determine							
Inclusion/exclusion criteria similar	Maa	No.	Maa	Vee	Maa	Maa	Vee
across study groups.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Strategy for recruiting or allocating							
participants similar across study	Yes	Yes	Yes	Yes	Yes	Yes	Yes
groups.							
Allocation sequence randomly	N/A	N/A	N/A	N/A	N/A	N/A	N/A
generated.	N/A	N/A	N/A	NA	N/A	NA	N/A
Group allocation concealed (i.e.,							
assignments could not be	N/A	N/A	N/A	N/A	N/A	N/A	N/A
predicted).							
Distribution of critical confounding							
factors similar across study groups	???	Yes	Yes	Yes	Yes	Yes	Yes
at baseline, or analysis controlled	111	res	res	res	res	res	res
for differences between groups.							
Accounted for variations in							
execution of study from proposed	N/A	N/A	N/A	N/A	N/A	N/A	N/A
protocol or research plan.							
Adherence to study protocols	Yes	Yes	Yes	Yes	Yes	Yes	Yes
similar across study groups.	103	TCS	103	103	103	103	103
Investigators accounted for							
unintended concurrent exposures							
that were differentially experienced	Yes	Yes	Yes	Yes	Yes	Yes	Yes
by study groups and might bias							
results.							
Participants blinded to their	N/A	N/A	N/A	N/A	N/A	N/A	N/A
intervention or exposure status.	,	,,.	,,,	,,.	,,, .	,	,
Investigators blinded to							
participants' intervention or	N/A	N/A	N/A	N/A	N/A	N/A	N/A
exposure status.							
Outcome assessors blinded to							
participants' intervention or	N/A	N/A	N/A	N/A	N/A	N/A	N/A
exposure status.							
Valid and reliable measures used							
consistently across study groups to							
assess inclusion/exclusion criteria,	Yes	Yes	Yes	Yes	Yes	Yes	No
exposures, outcomes, and							
confounders.							
Length of follow-up similar across	Yes	Yes	Yes	Yes	Yes	Yes	Yes
study groups.							
In cases of high or differential loss							
to follow-up, impact assessed	N/A	Yes	Yes	Yes	Yes	Yes	N/A
through sensitivity analysis or other							
adjustment. Other sources of bias taken into							
account in design and/or analysis of	Yes	Yes	Yes	Yes	Yes	Yes	Yes
study through matching or other statistical adjustment.							
Adequate statistical methods used							
to assess primary outcomes.	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	Hagger- Johnson, 2016	Keadle, 2015	Kikuchi, 2015	Koolhaas, 2017	Krokstad, 2017	Lee, 2016a	Lee, 2016b
(???) = Can't Determine							
Inclusion/exclusion criteria similar across study groups.	Yes	Yes	Yes	Yes	Yes	Yes	N/A
Strategy for recruiting or allocating participants similar across study groups.	Yes	Yes	Yes	Yes	Yes	Yes	N/A
Allocation sequence randomly generated.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Group allocation concealed (i.e., assignments could not be predicted).	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Distribution of critical confounding factors similar across study groups at baseline, or analysis controlled for differences between groups.	Yes	Yes	Yes	Yes	Yes	Yes	N/A
Accounted for variations in execution of study from proposed protocol or research plan.	Yes	N/A	Yes	N/A	N/A	N/A	N/A
Adherence to study protocols similar across study groups.	Yes	Yes	Yes	Yes	Yes	Yes	N/A
Investigators accounted for unintended concurrent exposures that were differentially experienced by study groups and might bias results.	Yes	Yes	Yes	Yes	No	Yes	N/A
Participants blinded to their intervention or exposure status.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Investigators blinded to participants' intervention or exposure status.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Dutcome assessors blinded to participants' intervention or exposure status.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Valid and reliable measures used consistently across study groups to assess inclusion/exclusion criteria, exposures, outcomes, and confounders.	No	No	No	Yes	No	No	N/A
Length of follow-up similar across study groups.	Yes	Yes	Yes	Yes	Yes	Yes	N/A
n cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.	Yes	Yes	Yes	N/A	Yes	Yes	No
Other sources of bias taken into account in design and/or analysis of study through matching or other statistical adjustment.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adequate statistical methods used	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	Loprinzi, 2016a	Loprinzi, 2016b	Martinez- Gomez, 2016	Matthews , 2016	Matthews , 2015	Pulsford, 2015	Schmid, 2016
(???) = Can't Determine							
Inclusion/exclusion criteria similar	NI / A	N/A	Voc	Voc	Voc	Voc	Voc
across study groups.	N/A	N/A	Yes	Yes	Yes	Yes	Yes
Strategy for recruiting or allocating participants similar across study groups.	N/A	N/A	Yes	Yes	Yes	Yes	Yes
Allocation sequence randomly generated.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Group allocation concealed (i.e., assignments could not be predicted).	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Distribution of critical confounding factors similar across study groups at baseline, or analysis controlled for differences between groups.	N/A	N/A	Yes	Yes	Yes	Yes	Yes
Accounted for variations in execution of study from proposed protocol or research plan.	N/A	Yes	N/A	N/A	N/A	N/A	Yes
Adherence to study protocols similar across study groups.	N/A	N/A	Yes	Yes	Yes	Yes	Yes
Investigators accounted for unintended concurrent exposures that were differentially experienced by study groups and might bias results.	N/A	N/A	Yes	Yes	Yes	Yes	Yes
Participants blinded to their intervention or exposure status.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Investigators blinded to participants' intervention or exposure status.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Outcome assessors blinded to participants' intervention or exposure status.	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Valid and reliable measures used consistently across study groups to assess inclusion/exclusion criteria, exposures, outcomes, and confounders.	N/A	Yes	No	Yes	No	Yes	Yes
Length of follow-up similar across study groups.	N/A	N/A	Yes	Yes	Yes	Yes	Yes
In cases of high or differential loss to follow-up, impact assessed through sensitivity analysis or other adjustment.	N/A	N/A	N/A	Yes	N/A	Yes	Yes
Other sources of bias taken into account in design and/or analysis of study through matching or other statistical adjustment.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adequate statistical methods used	Yes	Yes	Yes	Yes	Yes	Yes	Yes

	Schmid, 2015	Shuval, 2015	Stamataki s, 2015	van der Ploeg, 2015	Warren 2016	Wijndaele , 2017
(???) = Can't Determine						
Inclusion/exclusion criteria similar	Yes	Yes	Yes	Yes	Yes	Yes
across study groups.			<u> </u>			
Strategy for recruiting or allocating participants similar across study	Yes	Yes	Yes	Yes	Yes	Yes
groups.	res	res	res	Tes	Tes	Tes
Allocation sequence randomly						
generated.	N/A	N/A	N/A	N/A	N/A	N/A
Group allocation concealed (i.e.,						
assignments could not be	N/A	N/A	N/A	N/A	N/A	N/A
predicted).						
Distribution of critical confounding						
factors similar across study groups	Yes	Yes	Yes	Yes	Yes	Yes
at baseline, or analysis controlled		100	100	100	i es	103
for differences between groups.						
Accounted for variations in						Ň
execution of study from proposed	N/A	N/A	N/A	Yes	N/A	Yes
protocol or research plan.						
Adherence to study protocols similar across study groups.	Yes	Yes	Yes	Yes	Yes	Yes
Investigators accounted for						
unintended concurrent exposures						
that were differentially experienced	Yes	No	Yes	Yes	Yes	Yes
by study groups and might bias						
results.						
Participants blinded to their	N/A	N/A	N/A	N/A	N/A	N/A
intervention or exposure status.	N/A	N/A	N/A	N/A	N/A	IN/A
Investigators blinded to						
participants' intervention or	N/A	N/A	N/A	N/A	N/A	N/A
exposure status.						
Outcome assessors blinded to						
participants' intervention or	N/A	N/A	N/A	N/A	N/A	N/A
exposure status. Valid and reliable measures used						
consistently across study groups to						
assess inclusion/exclusion criteria,	Yes	No	Yes	Yes	No	No
exposures, outcomes, and	165	NO	163	163	NO	NU
confounders.						
Length of follow-up similar across						
study groups.	Yes	Yes	Yes	Yes	Yes	Yes
In cases of high or differential loss						
to follow-up, impact assessed	Yes	N/A	Yes	Yes	N/A	Yes
through sensitivity analysis or other	res	N/A	res	res	N/A	res
adjustment.						
Other sources of bias taken into						
account in design and/or analysis of	Yes	Yes	Yes	Yes	Yes	Yes
study through matching or other						
statistical adjustment.						
Adequate statistical methods used to assess primary outcomes.	Yes	Yes	Yes	Yes	Yes	Yes

Appendices

Appendix A: Analytical Framework

Analytical Framework

Sedentary Behavior

Systematic Review Questions

What is the relationship between sedentary behavior and all-cause mortality?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, socio-economic status, or weight status?
- c. Is the relationship independent of levels of light, moderate, or vigorous physical activity?
- d. Is there evidence that bouts or breaks in sedentary behavior change the relationship between sedentary behavior and all-cause mortality?

Population

Adults, 18 years and older

Exposure

Sedentary behavior

- Total sitting time
- Screen time
- Leisure-time sitting
- Occupational sitting time
- Objective measures of sedentary time

<u>Comparison</u>

Adults who participate in varying levels and types of sedentary behavior

Endpoint Health Outcomes

Incidence of:

• All-cause mortality

Key Definition:

Sedentary Behavior: In general, it is any waking behavior characterized by an energy expenditure ≤1.5 METs while in a sitting or reclining posture (Sedentary Behaviour Research Network. Standardized use of the terms "sedentary" and "sedentary behaviours." Appl Physiol Nutr Metab 2012;37:540-542).

Appendix B: Final Search Strategy¹

Research Questions

Q1. What is the relationship between sedentary behavior and all-cause mortality?

Q2. What is the relationship between sedentary behavior and mortality from cardiovascular disease? Q3. What is the relationship between sedentary behavior and mortality from cancer?

Search Strategy: PubMed Q1-3 (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Set	Search Terms				
Limit: Language	(English[lang])				
Limit: Exclude	NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))				
animal only					
Limit: Exclude	NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT (("infant"[Mesh]				
child only	OR "child"[mesh] OR "adolescent"[mh]) AND "adult"[Mesh]))				
Limit:	AND ("2000/01/01"[PDAT] : "3000/12/31"[PDAT])				
Publication					
Date					
Systematic					
Reviews/Meta-					
Analyses					
Limit:	AND (systematic[sb] OR meta-analysis[pt] OR "systematic review"[tiab] OR				
Publication	"systematic literature review" [tiab] OR metaanalysis [tiab] OR "meta analysis" [tiab]				
Type Include	OR metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled analysis"[tiab] OR				
Systematic	"pooled analyses"[tiab] OR "pooled data"[tiab])				
Reviews/Meta-					
Analyses					
Limit:	NOT ("comment"[Publication Type] OR "editorial"[Publication Type])				
Publication					
Type Exclude					
Systematic					
Reviews/Meta-					
Analyses					
Sedentary	AND (("Sedentary lifestyle"[mh] OR "Computer time"[tiab] OR "Computer				
	use"[tiab] OR "Screen time"[tiab] OR "Sitting"[tiab] OR "Television"[tiab] OR "TV				
	viewing"[tiab] OR "TV watching"[tiab] OR "Video game"[tiab] OR "Video				
	gaming"[tiab]) OR (("Sedentary"[tiab] OR "Inactivity"[tiab] OR "Physically				
	inactive"[tiab] OR "Sedentarism"[tiab]) NOT medline[sb]))				
Mortality OR	AND (("Death"[mh] OR "Death"[tiab] OR "Dying"[tiab] OR Fatal*[tiab] OR				
Cardiovascular	Mortalit*[tiab] OR "Postmortem"[tiab] OR "Mortality"[mh] OR				
Disease OR	"Arteriosclerosis"[mh] OR "Death, sudden, cardiac"[mh] OR "Heart failure"[mh] OR				
Cancer	"Myocardial ischemia"[mh] OR "myocardial infarction"[mh] OR "Stroke"[mh] OR				
	"Subarachnoid hemorrhage"[mh] OR "Aortic Aneurysm, Thoracic"[mh] OR				

Database: PubMed; Date of Search: 12/5/2016; 164 results

¹ One search was conducted to answer Q1, Q2, and Q3.

Set	Search Terms					
	"Intracranial hemorrhages"[mh] OR myocardial ischemia[mh]OR "neoplasms"[mh])					
	OR ((Arteriosclero*[tiab] OR Atherosclero*[tiab] OR "Cerebral infarction"[tiab] OR					
	"Cerebrovascular diseases"[tiab] OR "Cerebrovascular disease"[tiab] OR "Coronary					
	heart disease"[tiab] OR "Intracerebral Hemorrhage"[tiab] OR "Intracerebral					
	Hemorrhages"[tiab] OR "Intracranial hemorrhage"[tiab] OR "Intracranial					
	hemorrhages"[tiab] OR "ischemic"[tiab] OR "myocardial infarction"[tiab] OR					
	"Stroke"[tiab] OR "Subarachnoid hemorrhages"[tiab] OR "Subarachnoid					
	hemorrhage"[tiab] OR "Cancer"[tiab] OR "Neoplasm"[tiab] OR "Tumor"[tiab] OR					
	"Carcinogenesis"[tiab] OR "Leukemia"[tiab] OR "Lymphoma"[tiab] OR					
	"Malignan*"[tiab] OR "Blastoma"[tiab] OR "Tumour"[tiab] OR "Melanoma"[tiab] OR					
	"Myeloma"[tiab] OR "Carcinoma"[tiab] OR "Neoplasia"[tiab] OR "Sarcoma"[tiab] OR					
	"Tumors"[tiab] OR "Tumours"[tiab] OR "Neoplasms"[tiab] OR					
	"Adenosarcoma"[tiab] OR "Angiosarcoma"[tiab] OR "Astrocytoma"[tiab] OR					
	"Cholangiocarcinoma"[tiab] OR "Chondrosarcoma"[tiab] OR					
	"Craniopharyngioma"[tiab] OR "Ependymoma"[tiab] OR "Fibrosarcoma"[tiab] OR					
	"Glioma"[tiab] OR "Langerhans Cell Histiocytosis"[tiab] OR "Hodgkin's					
	Disease"[tiab] OR "Leiomyosarcoma"[tiab] OR "Medulloblastoma"[tiab] OR					
	"Mesothelioma"[tiab] OR "Neuroblastoma"[tiab] OR "Rhabdomyosarcoma"[tiab]					
	OR "Osteosarcoma"[tiab]) NOT medline[sb]))					

Search Strategy: CINAHL Q1-3 (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: CINAHL; Date of Search: 12/1/2016; 4 unique results Terms searched in title or abstract

Set	Search Terms			
Sedentary	Title OR Abstract: ("Sedentary" OR "Sedentary lifestyle" OR "Inactivity" OR "Physically inactive" OR "Sedentarism" OR "Computer time" OR "Computer use" OR "Screen time" OR "Sitting" OR "Television" OR "TV viewing" OR "TV watching" OR "Video game" OR "Video gaming")			
Mortality OR Cardiovasc ular Disease OR Cancer	AND Title OR Abstract: ("Death" OR "Dying" OR Fatal* OR Mortalit* OR "Postmortem" OR Arteriosclero* OR Atherosclero* OR "Cerebral infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR "Intracranial hemorrhages" OR "ischemic" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhages" OR "Subarachnoid hemorrhage" OR "Cancer" OR "Neoplasm" OR "Tumor" OR "Carcinogenesis" OR "Leukemia" OR "Lymphoma" OR "Malignan*" OR "Blastoma" OR "Tumour" OR "Melanoma" OR "Myeloma" OR "Carcinoma" OR "Neoplasia" OR "Sarcoma" OR "Tumors" OR "Tumours" OR "Neoplasms" OR "Adenosarcoma" OR "Angiosarcoma" OR "Astrocytoma" OR "Cholangiocarcinoma" OR "Chondrosarcoma" OR "Langerhans Cell Histiocytosis" OR "Hodgkin's Disease" OR "Leiomyosarcoma" OR "Medulloblastoma" OR "Mesothelioma" OR "Neuroblastoma" OR "Rhabdomyosarcoma" OR "Osteosarcoma")			
Systematic Reviews and Meta- Analyses	AND ("systematic review" OR "systematic literature review" OR metaanalysis OR "meta analysis" OR metanalyses OR "meta analyses"" OR "pooled analysis"[tiab] OR "pooled analyses"[tiab] OR "pooled data"[tiab])			
Limits	2000-present English language Peer reviewed Exclude Medline records Human			

Search Strategy: Cochrane Q1-3 (Systematic Reviews, Meta-Analyses, Pooled Analyses, and High-Quality Reports)

Database: Cochrane; Date of Search: 12/5/16; 37 Results Terms searched in title, abstract, or keywords

Set	Search Terms
Sedentary	Title, Abstract, Keywords: ("Sedentary" OR "Sedentary lifestyle" OR "Inactivity" OR "Physically inactive" OR "Sedentarism" OR "Computer time" OR "Computer use" OR "Screen time" OR "Sitting" OR "Television" OR "TV viewing" OR "TV watching" OR "Video game" OR "Video gaming")
Mortality OR Cardiovasc ular Disease OR Cancer	AND ("Death" OR "Dying" OR Fatal* OR Mortalit* OR "Postmortem" OR Arteriosclero* OR Atherosclero* OR "Cerebral infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR "Intracranial hemorrhages" OR "ischemic" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhages" OR "Subarachnoid hemorrhage" OR "Cancer" OR "Neoplasm" OR "Tumor" OR "Carcinogenesis" OR "Leukemia" OR "Lymphoma" OR "Malignan*" OR "Blastoma" OR "Tumour" OR "Melanoma" OR "Myeloma" OR "Carcinoma" OR "Neoplasia" OR "Sarcoma" OR "Tumors" OR "Tumours" OR "Neoplasms" OR "Adenosarcoma" OR "Angiosarcoma" OR "Astrocytoma" OR "Cholangiocarcinoma" OR "Chondrosarcoma" OR "Langerhans Cell Histiocytosis" OR "Hodgkin's Disease" OR "Leiomyosarcoma" OR "Medulloblastoma" OR "Mesothelioma" OR "Neuroblastoma" OR "Rhabdomyosarcoma" OR "Osteosarcoma")
Limits	2000-present Cochrane Reviews and Other Reviews Word variations not searched

Search Strategy: PubMed Q1-3 (Original Research)

Set	Search Terms					
Limit:	(English[lang])					
Language						
Limit:	NOT ("Animals"[Mesh] NOT ("Animals"[Mesh] AND "Humans"[Mesh]))					
Exclude						
animal only						
Limit:	NOT (("infant"[Mesh] OR "child"[mesh] OR "adolescent"[mh]) NOT (("infant"[Mesh] OR					
Exclude	"child"[mesh] OR "adolescent"[mh]) AND "adult"[Mesh]))					
child only						
Limit:	NOT (ad[sh] OR aa[sh] OR ai[sh] OR ci[sh] OR cn[sh] OR dh[sh] OR de[sh] OR dt[sh] OR					
Exclude	em[sh] OR en[sh] OR es[sh] OR eh[sh] OR ge[sh] OR hi[sh] OR is[sh] OR ip[sh] OR lj[sh]					
subheading	OR ma[sh] OR mi[sh] OR og[sh] OR ps[sh] OR py[sh] OR pk[sh] OR pd[sh] OR po[sh] OR					
S	re[sh] OR rt[sh] OR rh[sh] OR st[sh] OR sd[sh] OR tu[sh] OR th[sh] OR tm[sh] OR tr[sh]					
	OR ut[sh] OR ve[sh] OR vi[sh])					
Limit:	AND ("2014/01/01"[PDAT] : "3000/12/31"[PDAT])					
Publication						
Date						
(Original)						
Limit:	NOT ("comment" [Publication Type] OR "editorial" [Publication Type] OR					
Publication	"review"[Publication Type] OR systematic[sb] OR "meta-analysis"[publication type] OR					
Туре	"systematic review" [tiab] OR "systematic literature review" [tiab] OR metaanalysis [tiab]					
Exclude	OR "meta analysis"[tiab] OR metanalyses[tiab] OR "meta analyses"[tiab] OR "pooled					
(Original)	analysis"[tiab] OR "pooled analyses"[tiab] OR "pooled data"[tiab])					
Sedentary	AND (("Sedentary lifestyle"[mh] OR "Computer time"[tiab] OR "Computer use"[tiab] OR					
	"Screen time"[tiab] OR "Sitting"[tiab] OR "Television"[tiab] OR "TV viewing"[tiab] OR "TV watching"[tiab] OR "Video game"[tiab] OR "Video gaming"[tiab]) OR					
	(("Sedentary"[tiab] OR "Inactivity"[tiab] OR "Physically inactive"[tiab] OR					
	"Sedentarism"[tiab]) NOT medline[sb]))					
Mortality	AND (("Death"[mh] OR "Death"[tiab] OR "Dying"[tiab] OR Fatal*[tiab] OR					
OR	Mortalit*[tiab] OR "Postmortem"[tiab] OR "Mortality"[mh] OR "Arteriosclerosis"[mh]					
Cardiovasc	OR "Death, sudden, cardiac"[mh] OR "Heart failure"[mh] OR "Myocardial					
ular	ischemia"[mh] OR "myocardial infarction"[mh] OR "Stroke"[mh] OR "Subarachnoid					
Disease OR	hemorrhage"[mh] OR "Aortic Aneurysm, Thoracic"[mh] OR "Intracranial					
Cancer	hemorrhages"[mh] OR "neoplasms"[mh]) OR ((Arteriosclero*[tiab] OR					
	Atherosclero*[tiab] OR "Cerebral infarction"[tiab] OR "Cerebrovascular diseases"[tiab]					
	OR "Cerebrovascular disease"[tiab] OR "Coronary heart disease"[tiab] OR "Heart					
	failure"[tiab] OR "Intracerebral Hemorrhage"[tiab] OR "Intracerebral					
	Hemorrhages"[tiab] OR "Intracranial hemorrhage"[tiab] OR "Intracranial					
	hemorrhages"[tiab] OR "ischemic"[tiab] OR "myocardial infarction"[tiab] OR					
	"Stroke"[tiab] OR "Subarachnoid hemorrhages"[tiab] OR "Subarachnoid					
	hemorrhage"[tiab] OR "Cancer"[tiab] OR "Neoplasm"[tiab] OR "Tumor"[tiab] OR					
	"Carcinogenesis"[tiab] OR "Leukemia"[tiab] OR "Lymphoma"[tiab] OR "Malignan*"[tiab]					
	OR "Blastoma"[tiab] OR "Tumour"[tiab] OR "Melanoma"[tiab] OR "Myeloma"[tiab] OR					
	"Carcinoma"[tiab] OR "Neoplasia"[tiab] OR "Sarcoma"[tiab] OR "Tumors"[tiab] OR					

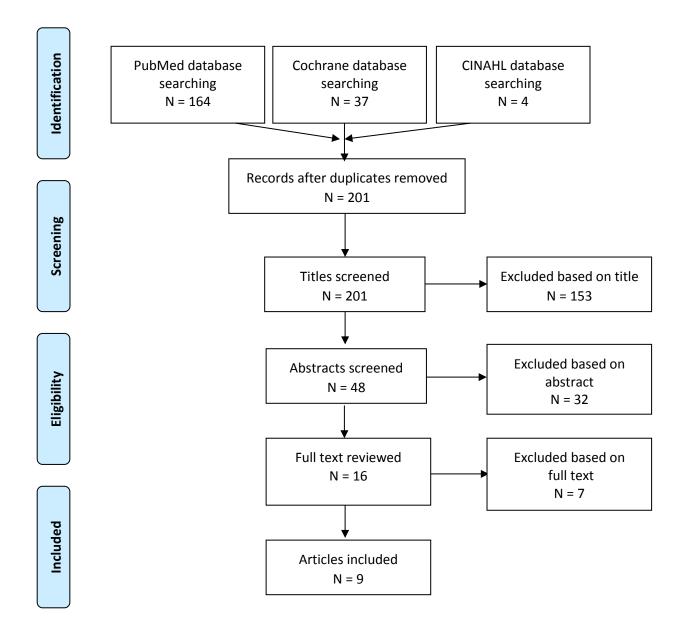
Database: PubMed; Date of Search: 1/30/17; 953 results

Set	Search Terms
	"Tumours"[tiab] OR "Neoplasms"[tiab] OR "Adenosarcoma"[tiab] OR
	"Angiosarcoma"[tiab] OR "Astrocytoma"[tiab] OR "Cholangiocarcinoma"[tiab] OR
	"Chondrosarcoma"[tiab] OR "Craniopharyngioma"[tiab] OR "Ependymoma"[tiab] OR
	"Fibrosarcoma"[tiab] OR "Glioma"[tiab] OR "Langerhans Cell Histiocytosis"[tiab] OR
	"Hodgkin's Disease"[tiab] OR "Leiomyosarcoma"[tiab] OR "Medulloblastoma"[tiab] OR
	"Mesothelioma"[tiab] OR "Neuroblastoma"[tiab] OR "Rhabdomyosarcoma"[tiab] OR
	"Osteosarcoma"[tiab]) NOT medline[sb]))

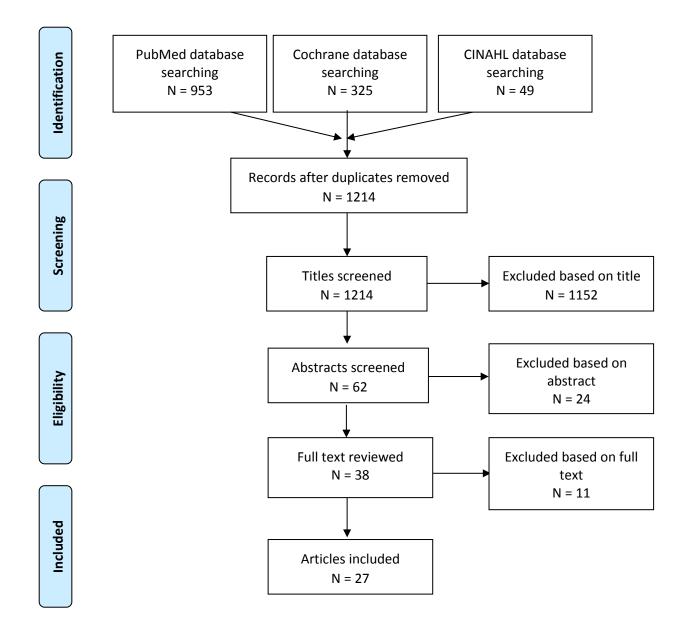
Search Strategy: CINAHL Q1-3 (Original Research)

Database: CINAHL; Date of Search: 1/27/17; 49 results Terms searched in title or abstract

Set	Search Terms				
Sedentary	Title and Abstract: ("Sedentary" OR "Sedentary lifestyle" OR "Inactivity" OR "Physically inactive" OR "Sedentarism" OR "Computer time" OR "Computer use" OR "Screen time" OR "Sitting" OR "Television" OR "TV viewing" OR "TV watching" OR "Video game" OR "Video gaming")				
Mortality	AND				
OR	("Death" OR "Dying" OR Fatal* OR Mortalit* OR "Postmortem" OR Arteriosclero* OR				
Cardiovasc	Atherosclero* OR "Cerebral infarction" OR "Cerebrovascular diseases" OR				
ular	"Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR				
Disease OR	"Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial				
Cancer	hemorrhage" OR "Intracranial hemorrhages" OR "ischemic" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhages" OR "Subarachnoid hemorrhage" OR "Cancer" OR "Neoplasm" OR "Tumor" OR "Carcinogenesis" OR "Leukemia" OR "Lymphoma" OR "Malignan*" OR "Blastoma" OR "Tumour" OR "Melanoma" OR "Myeloma" OR "Carcinoma" OR "Neoplasia" OR "Sarcoma" OR "Tumors" OR "Tumours" OR "Neoplasms" OR "Adenosarcoma" OR "Angiosarcoma" OR "Astrocytoma" OR "Cholangiocarcinoma" OR "Chondrosarcoma" OR "Craniopharyngioma" OR "Ependymoma" OR "Fibrosarcoma" OR "Glioma" OR "Langerhans Cell Histiocytosis" OR "Hodgkin's Disease" OR "Leiomyosarcoma" OR "Medulloblastoma" OR "Mesothelioma"				
Original	NOT				
Research	("systematic review" OR "systematic literature review" OR metaanalysis OR "meta analysis" OR metanalyses OR "meta analyses" OR "pooled analysis" OR "pooled analyses" OR "pooled data")				
Limits	Title or abstract				
	2014-present				
	English language				
	Peer reviewed				
	Exclude Medline records				
	Human				


Search Strategy: Cochrane Q1-3 (Original Research)

Database: Cochrane; Date of Search: 1/27/17; 325 Results Terms searched in title, abstract, or keywords


Set	Search Terms				
Sedentary	Title, Abstract, Keywords: ("Sedentary" OR "Sedentary lifestyle" OR "Inactivity" OR "Physically inactive" OR "Sedentarism" OR "Computer time" OR "Computer use" OR "Screen time" OR "Sitting" OR "Television" OR "TV viewing" OR "TV watching" OR "Video game" OR "Video gaming")				
Mortality OR Cardiovasc ular Disease OR Cancer	AND ("Death" OR "Dying" OR Fatal* OR Mortalit* OR "Postmortem" OR Arteriosclero* OR Atherosclero* OR "Cerebral infarction" OR "Cerebrovascular diseases" OR "Cerebrovascular disease" OR "Coronary heart disease" OR "Heart failure" OR "Intracerebral Hemorrhage" OR "Intracerebral Hemorrhages" OR "Intracranial hemorrhage" OR "Intracranial hemorrhages" OR "ischemic" OR "myocardial infarction" OR "Stroke" OR "Subarachnoid hemorrhages" OR "Subarachnoid hemorrhage" OR "Cancer" OR "Neoplasm" OR "Tumor" OR "Carcinogenesis" OR "Leukemia" OR "Lymphoma" OR "Malignan*" OR "Blastoma" OR "Tumour" OR "Melanoma" OR "Myeloma" OR "Carcinoma" OR "Neoplasia" OR "Sarcoma" OR "Tumors" OR "Tumours" OR "Neoplasms" OR "Adenosarcoma" OR "Angiosarcoma" OR "Astrocytoma" OR "Cholangiocarcinoma" OR "Chondrosarcoma" OR "Craniopharyngioma" OR "Ependymoma" OR "Fibrosarcoma" OR "Glioma" OR "Langerhans Cell Histiocytosis" OR				
	"Hodgkin's Disease" OR "Leiomyosarcoma" OR "Medulloblastoma" OR "Mesothelioma" OR "Neuroblastoma" OR "Rhabdomyosarcoma" OR "Osteosarcoma")				
Limits	2014-present Word variations not searched Trials				

Appendix C: Literature Tree

Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports Literature Tree

Original Research Literature Tree

Appendix D: Inclusion/Exclusion Criteria

Sedentary Subcommittee

Q1. What is the relationship between sedentary behavior and all-cause mortality?

- a. Is there a dose-response relationship? If yes, what is the shape of the relationship?
- b. Does the relationship vary by age, sex, race/ethnicity, or socio-economic status?
- c. Is the relationship independent of levels of light, moderate, or vigorous physical activity?
- d. Is there evidence that bouts or breaks in sedentary behavior change the relationship between sedentary behavior and all-cause mortality?

Category	Inclusion/Exclusion Criteria	Notes/Rationale
Publication	Include:	
Language	 Studies published with full text in English 	
Publication Status	Include:	
	 Studies published in peer-reviewed journals 	
	• Reports determined to have appropriate suitability	
	and quality by PAGAC	
	Exclude:	
	 Grey literature, including unpublished data, 	
	manuscripts, abstracts, conference proceedings	
Research Type	Include:	
	Original research	
	Meta-analyses	
	Systematic reviews	
	• Reports determined to have appropriate suitability	
	and quality by PAGAC	
Study Subjects	Include:	
	Human subjects	
Age of Study	Include:	Sedentary behavior in
Subjects	 Adults ages 18 and older 	youth will be address by
		youth subcommittee
Health Status of	Exclude:	
Study Subjects	Nonambulatory adults	
	Hospitalized patients	
Date of	Include:	
Publication	Original research, systematic reviews, and meta-	
	analyses published from 2000 to 2016	
Study Design	Include:	
	Prospective cohort studies	
	Systematic reviews	
	Meta-analyses	
	Reports determined to have appropriate suitability	
	and quality by PAGAC	
	Exclude:	
	Randomized controlled trials	

	Non-randomized controlled trials	
	 Retrospective cohort studies 	
	Case-control studies	
	Narrative reviews	
	Commentaries	
	• Editorials	
	Cross-sectional studies	
	Before-and-after studies	
Exposure	Include studies in which the exposure is:	
	All types of sedentary behavior	
	Exclude:	
	 Studies that use sedentary behavior solely as a confounding variable 	
Outcome	Include studies in which the outcome is:	
	All-cause mortality	

Appendix E: Rationale for Exclusion at Abstract or Full-Text Triage for Existing Systematic Reviews, Meta-Analyses, Pooled Analyses, and Reports

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

Citation	Outcome	Study Design	Exposure	Not ideal fit for replacement of de novo search
Biddle SJ, Bennie JA, Bauman AE, et al. Too much sitting and all- cause mortality: is there a causal link? <i>BMC Public Health</i> . 2016;16:635. doi:10.1186/s12889-016-3307-3.	x			
Boyle T, Fritschi L,Kobayashi LC, et al. Sedentary work and the risk of breast cancer in premenopausal and postmenopausal women: a pooled analysis of two case-control studies. <i>Occup Environ Med</i> . 2016;73(11):735-741. doi:10.1136/oemed-2015-103537.	x			
Brenner DR. Cancer incidence due to excess body weight and leisure-time physical inactivity in Canada: implications for prevention. <i>Prev Med</i> . 2014;66:131-139. doi:10.1016/j.ypmed.2014.06.018.	х			
Buckley JP, Hedge A, Yates T, et al. The sedentary office: an expert statement on the growing case for change towards better health and productivity. <i>Br J Sports Med.</i> 2015;49:1357-1362. doi:10.1136/bjsports-2015-094618.	х			
Cannioto RA, LaMonte MJ, Kelemen LE, et al. Recreational physical inactivity and mortality in women with invasive epithelial ovarian cancer: evidence from the Ovarian Cancer Association Consortium. <i>Br J Cancer</i> . 2016;115(1):95-101. doi:10.1038/bjc.2016.153.			x	
Charansonney OL, Despres JP. Disease preventionshould we target obesity or sedentary lifestyle? <i>Nat Rev Cardiol</i> . 2010;7(8):468-472. doi:10.1038/nrcardio.2010.68.		х		
Cong YJ, Gan Y, Sun HL, et al. Association of sedentary behaviour with colon and rectal cancer: a meta-analysis of observational studies. <i>Br J Cancer</i> . 2014;110:817-826. doi:10.1038/bjc.2013.709.	х			
de Rezende LF, Rodrigues Lopes M, Rey-Lopez JP, Matsudo VK, Luiz Odo C. Sedentary behavior and health outcomes: an overview of systematic reviews. <i>PLoS One</i> . 2014;9:e105620. doi:10.1371/journal.pone.0105620.		х		
Dempsey PC, Owen N, Biddle SJ, Dunstan DW. Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease. <i>Curr Diab Rep</i> . 2014;14(9):522. doi:10.1007/s11892-014-0522-0.	х	х		
English C, Manns PJ, Tucak C, Bernhardt J. Physical activity and sedentary behaviors in people with stroke living in the community: a systematic review. <i>Phys Ther.</i> 2014;94(2):185-196. doi:10.2522/ptj.20130175.	х			
Haney EM, Huffman LH, Bougatsos C, et al. U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. Screening for lipid disorders in children and adolescents. 2007;Jul(Report No. 07-0598).	х			
Henson J, Dunstan DW, Davies MJ, Yates T. Sedentary behaviour as a new behavioural target in the prevention and treatment of type 2 diabetes. <i>Diabetes Metab Res Rev.</i> 2016;32(suppl 1):213- 220. doi:10.1002/dmrr.2759.		х		
Hughes J, Kee F, O'Flaherty M, et al. Modelling coronary heart disease mortality in Northern Ireland between 1987 and 2007:		Х		

Citation	Outcome	Study Design	Exposure	Not ideal fit for replacement of de novo search
broader lessons for prevention. Eur J Prev Cardiol.				
2013;20(2):310-321. doi:10.1177/2047487312441725.				
Jaworski CA. Latest clinical research published by ACSM. Curr				
Sports Med Rep. 2015;14(1):351-352.		х		
doi:10.1249/JSR.0b013e3182750106.				
Katzmarzyk PT, Lee IM. Sedentary behaviour and life expectancy				
in the USA: a cause-deleted life table analysis. BMJ Open.	х			
2012;2e000828. doi:10.1136/bmjopen-2012-000828.				
Keum N, Cao Y, Oh H, et al. Sedentary behaviors and light-				
intensity activities in relation to colorectal cancer risk. Int J	х			
Cancer. 2016;138(9):2109-2117. doi:10.1002/ijc.29953.				
Lin JS, Eder M, Weinmann S, et al. U.S. Preventive Services Task				
Force Evidence Syntheses, formerly Systematic Evidence Reviews.				
Behavioral counseling to prevent skin cancer: systematic	х			
evidence review to update the 2003 U.S. Preventive Services Task				
Force Recommendation. 2011;82(Report No.11-05152-EF-1).				
Lynch BM. Sedentary behavior and cancer: a systematic review of				
the literature and proposed biological mechanisms. <i>Cancer</i>				
<i>Epidemiol Biomarkers Prev.</i> 2010;19(11):2691-2709.	Х			
doi:10.1158/1055-9965.EPI-10-0815.				
Milton K, Macniven R, Bauman A. Review of the epidemiological				
evidence for physical activity and health from low- and middle-				
income countries. <i>Glob Public Health</i> . 2014;9(4):369-381.			х	
doi:10.1080/17441692.2014.894548.				
Molmenti CL, Hibler EA, Ashbeck EL, et al. Sedentary behavior is				
associated with colorectal adenoma recurrence in men. <i>Cancer</i>				
Causes Control. 2014;25(10):1387-1395. doi:10.1007/s10552-	х			
014-0444-9.				
Moore SC, Gierach GL, Schatzkin A, Matthews CE. Physical				
activity, sedentary behaviours, and the prevention of endometrial				
cancer. <i>Br J Cancer</i> . 2010;103(7):933-938.	х			
doi:10.1038/sj.bjc.6605902.				
Nelson SH, Marinac CR, Patterson RE, et al. Impact of very low				
physical activity, BMI, and comorbidities on mortality among				
breast cancer survivors. Breast Cancer Res Treat.		Х		
2016;155(3):551-557. doi:10.1007/s10549-016-3694-2.				
Oczkowski W. Complexity of the relation between physical				
activity and stroke: a meta-analysis. <i>Clin J Sport Med</i> .	х			
2005;15(5):399.	~			
Pandey A, Salahuddin U, Garg S, et al. Continuous dose-response				
association between sedentary time and risk for cardiovascular				
disease: a meta-analysis. JAMA Cardiol. 2016;1(5):575-583.				Х
doi:10.1001/jamacardio.2016.1567.				
Park S, Kim Y, Shin HR, et al. Population-attributable causes of			1	
cancer in Korea: obesity and physical inactivity. <i>PLoS One</i> .	х			
2014;9(7):e90871. doi:10.1371/journal.pone.0090871.	~		1	
Pizot C, Boniol M, Mullie P, et al. Physical activity, hormone			1	
replacement therapy and breast cancer risk: a meta-analysis of				
prospective studies. Eur J Cancer. 2016;52:138-154.	х		1	
doi:10.1016/j.ejca.2015.10.063.				
Rezende LF, Sa TH, Mielke GI, Viscondi JY, Rey-Lopez JP, Garcia				
LM. All-cause mortality attributable to sitting time: analysis of 54				
countries worldwide. Am J Prev Med. 2016;51(2):253-263.				Х
doi:10.1016/j.amepre.2016.01.022.			1	
30201010/ Junich CLEDIO.01.022.	I		1	

Citation	Outcome	Study Design	Exposure	Not ideal fit for replacement of de novo search
Schmid D, Leitzmann MF. Television viewing and time spent sedentary in relation to cancer risk: a meta-analysis. <i>J Natl Cancer</i> <i>Inst</i> . 2014;106(7). pii: dju098. doi:10.1093/jnci/dju098.	х			
Shen D, Mao W, Liu T, et al. Sedentary behavior and incident cancer: a meta-analysis of prospective studies. <i>PLoS One.</i> 2014;9(8):e105709. doi:10.1371/journal.pone.0105709.	х			
Sluik D, Buijsse B, Muckelbauer R, et al. Physical activity and mortality in individuals with diabetes mellitus: a prospective study and meta-analysis. <i>Arch Intern Med</i> . 2012;172(17):1285- 1295. doi:10.1001/archinternmed.2012.3130.			x	
Solomon TP, Thyfault JP. Type 2 diabetes sits in a chair. <i>Diabetes</i> <i>Obes Metab.</i> 2013;15(11): 987-992. doi:10.1111/dom.12105.		х		
Stamatakis E, Chau JY, Pedisic Z, et al. Are sitting occupations associated with increased all-cause, cancer, and cardiovascular disease mortality risk? A pooled analysis of seven British population cohorts. <i>PLoS One</i> . 2013;8(9):e73753. doi:10.1371/journal.pone.0073753.		Х		
Tarraga Lopez PJ, Albero JS, Rodriguez-Montes JA. Primary and secondary prevention of colorectal cancer. <i>Clin Med Insights Gastroenterol.</i> 2014;7:33-46. doi:10.4137/CGast.S14039.			x	
van Uffelen JG, Wong J, Chau JY, et al. Occupational sitting and health risks: a systematic review. <i>Am J Prev Med.</i> 2010;39(4):379- 388. doi:10.1016/j.amepre.2010.05.024.			x	
Vancampfort D, Firth J, Schuch F, et al. Physical activity and sedentary behavior in people with bipolar disorder: a systematic review and meta-analysis. <i>J Affect Disord</i> . 2016;201:145-152. doi:10.1016/j.jad.2016.05.020.	х			
Wahid A, Manek N, Nichols M, et al. Quantifying the association between physical activity and cardiovascular disease and diabetes: a systematic review and meta-analysis. <i>J Am Heart</i> <i>Assoc</i> . 2016;5(9). pii: e002495. doi:10.1161/JAHA.115.002495.			x	
Wilson LF, Page AN, Dunn NA, Pandeya N, Protani MM, Taylor RJ. Population attributable risk of modifiable risk factors associated with invasive breast cancer in women aged 45-69 years in Queensland, Australia. <i>Maturitas</i> . 2013;76(4):370-376. doi:10.1016/j.maturitas.2013.09.002.	х			
World Health Organization. <i>Global recommendations on physical activity for health.</i> Geneva; World Health Organization;2010.	х			
Zhou Y, Zhao H, Peng C. Association of sedentary behavior with the risk of breast cancer in women: update meta-analysis of observational studies. <i>Ann Epidemiol.</i> 2015;25(9):687-697. doi:10.1016/j.annepidem.2015.05.007.	х			

Rationale for Exclusion at Abstract and/or Full-Text Triage for Original Research

The table below lists the excluded articles with at least one reason for exclusion, but may not reflect all possible reasons.

Citation	Outcome	Study Design	Exposure
Beddhu S, Wei G, Marcus RL, Chonchol M, Greene T. Light-		staat scollen	2.12.00010
intensity physical activities and mortality in the United States			
general population and CKD subpopulation. <i>Clin J Am Soc</i>		Х	
Nephrol. 2015;10(7):1145-1153. doi:10.2215/CJN.08410814.			
Behrend SW. Television viewing and time spent sedentary in			
relation to cancer risk. Oncol Nurs Forum. 2014;41(6):695-696.	х		
doi:10.1188/14.ONF.695-696.	A		
Bjork Petersen C, Bauman A, Gronbaek M, Wulff Helge J,			
Thygesen LC, Tolstrup JS. Total sitting time and risk of			
myocardial infarction, coronary heart disease and all-cause	х		
mortality in a prospective cohort of Danish adults. <i>Int J Behav</i>	X		
Nutr Phys Act. 2014;11:13. doi:10.1186/1479-5868-11-13.			
Bol O, Cebicci H, Koyuncu S, Şarlı B, Günay N. A hidden			
household danger: television. Ulus Travma Acil Cerrahi Derg.			х
2016;22(3):265-268. doi:10.5505/tjtes.2015.42078.			~
Borodulin K, Karki A, Laatikainen T, Peltonen M, Luoto R. Daily			
sedentary time and risk of cardiovascular disease: the National			
FINRISK 2002 Study. J Phys Act Health. 2015;12(7):904-908.	Х		
doi:10.1123/jpah.2013-0364.			
Borrell LN. The effects of smoking and physical inactivity on			
advancing mortality in U.S. adults. Ann Epidemiol.			х
2014;24(6):484-487. doi:10.1016/j.annepidem.2014.02.016.			^
Brown JC, Harhay MO, Harhay MN. Physical activity, diet quality,	х		
and mortality among community-dwelling prefrail and frail older	^		
adults. J Nutr Gerontol Geriatr. 2016;35(4):253-266.			
Brown JC, Harhay MO, Harhay MN. Physical activity, diet quality,	v		
and mortality among sarcopenic older adults. Aging Clin Exp	х		
Res. 2017;29(2):257-263. doi:10.1007/s40520-016-0559-9.			
Chau JY, Grunseit A, Midthjell K, et al. Sedentary behaviour and			
risk of mortality from all-causes and cardiometabolic diseases in	Х		
adults: evidence from the HUNT3 population cohort. <i>Br J Sports</i>			
Med. 2015;49(11):737-742.			
Converse LJ. Sitting with death. Am J Nurs. 2016;116(12):72.		Х	
Coombs N, Stamataki E, Lee IM. Physical inactivity among older			
adults: implications for life expectancy among non-overweight			х
and overweight or obese individuals. Obes Res Clin Pract.			X
2015;9(2):175-179. doi:10.1016/j.orcp.2014.11.004.			
de Rezende LF, Rabacow FM, Viscondi JY, Luiz Odo C, Matsudo			
VK, Lee IM. Effect of physical inactivity on major			х
noncommunicable diseases and life expectancy in Brazil. J Phys			~
Act Health. 2015;12(3):299-306. doi:10.1123/jpah.2013-0241.			
Eijsvogels TM, George KP, Thompson PD. Cardiovascular			
benefits and risks across the physical activity continuum. Curr		х	
Opin Cardiol. 2016;31(5):566-571.		^	
doi:10.1097/HCO.00000000000321.			
Everson-Hock ES, Green MA, Goyder EC, et al. Reducing the			
impact of physical inactivity: evidence to support the case for			
targeting people with chronic mental and physical conditions. J	Х		Х
Public Health (Oxf). 2016;38(2):343-351.			
doi:10.1093/pubmed/fdv036.			

Citation	Outcome	Study Design	Exposure
Fassier P, Zelek L, Partula V, et al. Variations of physical activity			
and sedentary behavior between before and after cancer			
diagnosis: results from the prospective population-based	Х		
NutriNet-Sante cohort. Medicine (Baltimore).			
2016;95(40):e4629.			
Fazel-Tabar Malekshah A, Zaroudi M, Etemadi A, et al. The			
combined effects of healthy lifestyle behaviors on all-cause			х
mortality: the Golestan Cohort Study. Arch Iran Med.			^
2016;19(11):752-761.			
Fox KR, Ku PW, Hillsdon M, et al. Objectively assessed physical			
activity and lower limb function and prospective associations			
with mortality and newly diagnosed disease in UK older adults:			Х
an OPAL four-year follow-up study. Aging. 2015;44(2):261-268.			
doi:10.1093/ageing/afu168.			
Grace MS, Lynch BM, Dillon F, Barr EM, Owen N, Dunstan DW.			
Joint associations of smoking and television viewing time on	х		
cancer and cardiovascular disease mortality. Int J Cancer.	^		
2017;140(7):1538-1544. doi:10.1002/ijc.30580.			
Hayashi R, Iso H, Cui R, Tamakoshi A; JACC Study Group.			
Occupational physical activity in relation to risk of cardiovascular			
mortality: the Japan Collaborative Cohort Study for Evaluation			Х
for Cancer Risk (JACC Study). Prev Med. 2016;89:286-291.			
doi:10.1016/j.ypmed.2016.06.008.			
Holme I, Anderssen SA. Increases in physical activity is as			
important as smoking cessation for reduction in total mortality			
in elderly men: 12 years of follow-up of the Oslo II study. Br J			Х
Sports Med. 2015;49(11):743-748. doi:10.1136/bjsports-2014-			
094522.			
Holme I, Tonstad S. Increased predictive ability of BMI but not			
other risk factors with time in men: 39-year follow-up of total			х
mortality in the Oslo Study. Obes Facts. 2014;7(5):311-321.			^
doi:10.1159/000368567.			
Holtermann A, Mork PJ, Nilsen TI. Hours lying down per day and			
mortality from all-causes and cardiovascular disease: the HUNT			v
Study, Norway. Eur J Epidemiol. 2014;29(8):559-565.			х
doi:10.1007/s10654-014-9939-7.			
Ikehara S, Iso H, Wada Y; JACC Study Group. Television viewing			
time and mortality from stroke and coronary artery disease			
among Japanese men and women-the Japan Collaborative	Х		
Cohort Study. Circ J. 2015;79(11):2389-2395.			
doi:10.1253/circj.CJ-14-1335.			
Klenk J, Dallmeier D, Denkinger MD, Rapp K, Koenig W,			
Rothenbacher D; ActiFE Study Group. Objectively measured			
walking duration and sedentary behaviour and four-year	Х		
mortality in older people. PLoS One. 2016;11(4):e0153779.			
doi:10.1371/journal.pone.0153779.			
Llamas-Velasco S, Villarejo-Galende A, Contador I, Pablos DL,			
Hernández-Gallego J, Bermejo-Pareja F. Physical activity and			
long-term mortality risk in older adults: a prospective			Х
population based study (NEDICES). Prev Med Rep. 2016;4:546-			
550. doi:10.1016/j.pmedr.2016.10.002.			
Loprinzi PD, Edwards MK, Sng E, Addoh O. Sedentary behavior			
and residual-specific mortality. Health Promot Perspect.	Х		
2016;6(4):196-201. doi:10.15171/hpp.2016.32.			
Menotti A, Puddu PE, Lanti M, Maiani G, Catasta G, Fidanza AA.			х
Lifestyle habits and mortality from all and specific causes of			~

Citation	Outcome	Study Design	Exposure
death: 40-year follow-up in the Italian Rural Areas of the Seven			
Countries Study. J Nutr Health Aging. 2014;18(3):314-321.			
doi:10.1007/s12603-013-0392-1.			
Nandi A, Glymour MM, Subramanian SV. Association among			
socioeconomic status, health behaviors, and all-cause mortality			х
in the United States. <i>Epidemiology</i> . 2014;25(2):170-177.			~
doi:10.1097/EDE.000000000000038.			
Papandreou C, Tuomilehto H. Coronary heart disease mortality			
in relation to dietary, lifestyle and biochemical risk factors in the			
countries of the Seven Countries Study: a secondary dataset		Х	
analysis. J Hum Nutr Diet. 2014;27(2):168-175.			
doi:10.1111/jhn.12187.			
Pavey TG, Peeters GG, Brown WJ. Sitting-time and 9-year all-			
cause mortality in older women. Br J Sports Med. 2015;49(2):95-	Х		
99. doi: 10.1136/bjsports-2012-091676.			
Shaw BA, Agahi N. Smoking and physical inactivity patterns			
during midlife as predictors of all-cause mortality and disability:			Х
a 39-year prospective study. Eur J Ageing. 2014;11(3):195-204.			
Stenholm S, Head J, Kivimaki M, et al. Smoking, physical			
inactivity and obesity as predictors of healthy and disease-free	х		х
life expectancy between ages 50 and 75: a multicohort study. Int	X		~
J Epidemiol. 2016;45(4):1260-1270.			
Xiao Q, Keadle SK, Hollenbeck AR, Matthews CE. Sleep duration			
and total and cause-specific mortality in a large US cohort:			
interrelationships with physical activity, sedentary behavior, and			Х
body mass index. Am J Epidemiol. 2014;180(10):997-1006.			
doi:10.1093/aje/kwu222.			
Xu G, Sui X, Liu S, et al. Effects of insufficient physical activity on			
mortality and life expectancy in Jiangxi province of China, 2007-			х
2010. PLoS One. 2014;9(10):e109826.			~
doi:10.1371/journal.pone.0109826.			

References

1. Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease incidence,

mortality, and hospitalization in adults: A systematic review and meta-analysis. *Ann Intern Med*. 2015;162(2):123-132.

2. Chau JY, Grunseit AC, Chey T, et al. Daily sitting time and all-cause mortality: A meta-analysis. *PLoS One*. 2013;8(11):e80000. doi:10.1371/journal.pone.0080000.

3. Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. *Lancet*. 2016;388(10051):1302-1310. doi:10.1016/S0140-6736(16)30370-1.

4. Grontved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: A meta-analysis. *JAMA*. 2011;305(23):2448-2455. doi: 10.1001/jama.2011.812.

5. Sun JW, Zhao LG, Yang Y, Ma X, Wang YY, Xiang YB. Association between television viewing time and all-cause mortality: A meta-analysis of cohort studies. *Am J Epidemiol*. 2015;182(11):908-16. doi:10.1093/aje/kwv164.

6. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis. *Diabetologia*. 2012;55(11):2895-2905. doi: 10.1007/s00125-012-2677-z.

7. de Rezende LF, Rey-Lopez JP, Matsudo VK, do Carmo Luiz O. Sedentary behavior and health outcomes among older adults: A systematic review. *BMC Public Health*. 2014;14:333. doi:10.1186/1471-2458-14-333.

8. Proper KI, Singh AS, van Mechelen W, Chinapaw MJ. Sedentary behaviors and health outcomes among adults: A systematic review of prospective studies. *Am J Prev Med*. 2011;40(2):174-82. doi:10.1016/j.amepre.2010.10.015.

9. Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-2011. *Am J Prev Med*. 2011;41(2):207-215. doi:10.1016/j.amepre.2011.05.004.

10. Ding D, Rogers K, van der Ploeg H, Stamatakis E, Bauman AE. Traditional and emerging lifestyle risk behaviors and all-cause mortality in middle-aged and older adults: Evidence from a large population-based Australian cohort. *PLoS Med*. 2015;12(12):e1001917. doi:10.1371/journal.pmed.1001917.

11. Edwards MK, Loprinzi PD. All-cause mortality risk as a function of sedentary behavior, moderate-to-vigorous physical activity and cardiorespiratory fitness. *Phys Sportsmed*. 2016;44(3):223-230. doi:10.1080/00913847.2016.1221751.

12. Ensrud KE, Blackwell TL, Cauley JA, et al. Objective measures of activity level and mortality in older men. *J Am Geriatr Soc*. 2014;62(11):2079-2087. doi:10.1111/jgs.13101.

13. Evenson KR, Herring AH, Wen F. Accelerometry-assessed latent class patterns of physical activity and sedentary behavior with mortality. *Am J Prev Med*. 2017;52(2):135-143. doi:10.1016/j.amepre.2016.10.033.

14. Evenson KR, Wen F, Herring AH. Associations of accelerometry-assessed and self-reported physical activity and sedentary behavior with all-cause and cardiovascular mortality among U.S. adults. *Am J Epidemiol*. 2016;184(9):621-632.

15. Fishman EI, Steeves JA, Zipunnikov V, et al. Association between objectively measured physical activity and mortality in NHANES. *Med Sci Sports Exerc.* 2016;48(7):1303-1311. doi:10.1249/MSS.00000000000885.

16. Grunseit AC, Chau JY, Rangul V, Holmen TL, Bauman A. Patterns of sitting and mortality in the Nord-Trondelag health study (HUNT). *Int J Behav Nutr Phys Act*. 2017;14(1):8. doi:10.1186/s12966-016-0457-8.

17. Hagger-Johnson G, Gow AJ, Burley V, Greenwood D, Cade JE. Sitting time, fidgeting, and all-cause mortality in the UK women's cohort study. *Am J Prev Med*. 2016;50(2):154-60. doi:10.1016/j.amepre.2015.06.025.

18. Keadle SK, Arem H, Moore SC, Sampson JN, Matthews CE. Impact of changes in television viewing time and physical activity on longevity: A prospective cohort study. *Int J Behav Nutr Phys Act*. 2015;12:156. doi: 10.1186/s12966-015-0315-0.

19. Kikuchi H, Inoue S, Odagiri Y, et al. Occupational sitting time and risk of all-cause mortality among Japanese workers. *Scand J Work Environ Health*. 2015;41(6):519-28. doi:10.5271/sjweh.3526.

20. Koolhaas CM, Dhana K, van Rooij FJ, et al. Sedentary time assessed by actigraphy and mortality: The Rotterdam Study. *Prev Med*. 2017;95:59-65. doi:10.1016/j.ypmed.2016.11.021.

21. Krokstad S, Ding D, Grunseit AC, et al. Multiple lifestyle behaviours and mortality, findings from a large population-based Norwegian cohort study - The HUNT Study. *BMC Public Health*. 2017;17(1):58. doi:10.1186/s12889-016-3993-x.

22. Lee J, Kuk JL, Ardern Cl. The relationship between changes in sitting time and mortality in postmenopausal U.S. women. *J Public Health (Oxf)*. 2016a;38(2):270-8. doi:10.1093/pubmed/fdv055.

23. Lee PH. Examining non-linear associations between accelerometer-measured physical activity, sedentary behavior, and all-cause mortality using segmented Cox regression. *Front Physiol*. 2016b;7:272. doi:10.3389/fphys.2016.00272.

24. Loprinzi PD, Loenneke JP, Ahmed HM, Blaha MJ. Joint effects of objectively-measured sedentary time and physical activity on all-cause mortality. *Prev Med*. 2016b;90(Sep):47-51. doi:10.1016/j.ypmed.2016.06.026.

25. Loprinzi PD, Joyner C. Accelerometer-determined physical activity and mortality in a national prospective cohort study: Considerations by visual acuity. *Prev Med*. 2016a(Jun);87:18-21. doi:10.1016/j.ypmed.2016.02.005.

26. Martinez-Gomez D, Guallar-Castillon P, Rodriguez-Artalejo F. Sitting time and mortality in older adults with disability: A national cohort study. *J Am Med Dir Assoc*. 2016;17(10):960.e15-20. doi:10.1016/j.jamda.2016.07.016.

27. Matthews CE, Keadle SK, Troiano RP, et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in U.S. adults. *Am J Clin Nutr*. 2016;104(5):1424-1432.

28. Matthews CE, Moore SC, Sampson J, et al. Mortality benefits for replacing sitting time with different physical activities. *Med Sci Sports Exerc*. 2015;47(9):1833-40. doi:10.1249/MSS.00000000000621.

29. Pulsford RM, Stamatakis E, Britton AR, Brunner EJ, Hillsdon M. Associations of sitting behaviours with all-cause mortality over a 16-year follow-up: The Whitehall II study. *Int J Epidemiol*. 2015;44(6):1909-16. doi:10.1093/ije/dyv191.

30. Schmid D, Ricci C, Baumeister SE, Leitzmann MF. Replacing sedentary time with physical activity in relation to mortality. *Med Sci Sports Exerc*. 2016;48(7):1312-9. doi:10.1249/MSS.00000000000913.

31. Schmid D, Ricci C, Leitzmann MF. Associations of objectively assessed physical activity and sedentary time with all-cause mortality in U.S. adults: The NHANES study. *PLoS One*. 2015;10(3):e0119591. doi:10.1371/journal.pone.0119591.

32. Shuval K, Finley CE, Barlow CE, Nguyen BT, Njike VY, Gabriel KP. Independent and joint effects of sedentary time and cardiorespiratory fitness on all-cause mortality: The Cooper Center Longitudinal Study. *BMJ Open*. 2015;5(10):e008956.

33. Stamatakis E, Rogers K, Ding D, et al. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: A prospective study of 201,129 mid-aged and older adults. *Int J Behav Nutr Phys Act*. 2015;12(Sep):121. doi: 10.1186/s12966-015-0280-7.

34. van der Ploeg HP, Moller SV, Hannerz, H, van der Beek AJ, Holtermann A. Temporal changes in occupational sitting time in the Danish workforce and associations with all-cause mortality: Results from the Danish work environment cohort study. *Int J Behav Nutr Phys Act.* 2015;12:71. doi:10.1186/s12966-015-0233-1.

35. Warren Andersen S, Zheng, W, Sonderman, J, et al. Combined Impact of Health Behaviors on Mortality in Low-Income Americans. *Am J Prev Med*. 2016;51(3):344-355.

36. Wijndaele K, Sharp SJ, Wareham NJ, Brage S. Mortality risk reductions from substituting screen-time by discretionary activities. *Med Sci Sports Exerc*. 2017;Jan 19. doi: 10.1249/MSS.00000000001206.