

Meeting 2

2018 Physical Activity
 Guidelines Advisory Committee

October 27 ${ }^{\text {th }}$

Meeting 2

Welcome

Richard D. Olson, MD, MPH Designated Federal Officer

Office of Disease Prevention

PAGAC Public Meeting 2 Agenda

Day 1, Thursday October $27^{\text {th }}$

- Call to Order, Roll Call, and Welcome
- Public Oral Testimony
- Presentation and Discussion on Device-based vs. Reported Measurement of Physical Activity
- Committee Discussion
- Meeting Adjourn

Day 2, Friday October 28 $^{\text {th }}$

- Call to Order, Roll Call, and Welcome
- Introduction Subcommittee Presentations, Overarching Goals, and Committee Discussion
- Subcommittee Presentations
- Break
- Subcommittee Presentations
- Lunch
- Overall Question Prioritization
- Committee Discussion
- 3:15 pm Wrap Up and Next Steps
- Meeting Adjourn

2018 PAGAC

- Ken Powell, MD, MPH, Co-chair Retired, CDC and Georgia
Department of Human Resources
- Abby C. King, PhD, Co-chair Stanford University School of Medicine
- David Buchner, MD, MPH, FACSM
University of Illinois
- Wayne Campbell, PhD Purdue University
- Loretta DiPietro, PhD, MPH, FACSM
George Washington University
- Kirk I. Erickson, PhD

University of Pittsburgh

- Charles H. Hillman, PhD Northeastern University
- John M. Jakicic, PhD University of Pittsburgh
- Kathleen F. Janz, EdD, FACSM University of Iowa
- Peter T. Katzmarzyk, PhD Pennington Biomedical Research Center
- William E. Kraus, MD, FACSM Duke University
- Richard F. Macko, MD University of Maryland School of Medicine
- David Marquez, PhD, FACSM University of Illinois at Chicago
- Anne McTiernan, MD, PhD, FACSM Fred Hutchinson Cancer Research Center
- Russell R. Pate, PhD, FACSM University of South Carolina
- Linda Pescatello, PhD, FACSM University of Connecticut School of Medicine
- Melicia C. Whitt-Glover, PhD, FACSM
Gramercy Research Group

Meeting 2

Public Oral Testimony

PA Assessment Mode Issues for Consideration: A View from NHANES

Richard P. Troiano, Ph.D.
Captain, USPHS

U.S. Adults Meeting PA Recommendations

* BRFSS 2005 ($30 \mathrm{~min} \times 5 \mathrm{~d}$ moderate or $20 \mathrm{~min} \times 3 \mathrm{~d}$ vigorous)
** NHANES 2003-2004 ($150 \mathrm{~min} /$ week moderate or greater intensity)
*** NHANES 2003-2004, 20-59 y (30 min x 5d moderate or greater, Troiano et al. 2008)

Presentation Overview

1. NHANES questionnaire and accelerometer protocol
2. Within-person activity time comparisons from 2003-2006 NHANES
3. Evolving thoughts about self-report and objective measures
4. Accelerometer relation with biomarkers and mortality

NHANES 2003-2006

- Nationally representative survey
- Complex, multi-stage probability sample
- Population racial-ethnic subgroups
- Non-Hispanic White
- Non-Hispanic Black
- Mexican-American
- Interview in household
- Examination at mobile center

NHANES Physical Activity Questionnaire

- Administered in household interview
- Activities that last "at least 10 minutes"
- Past 30 days reference period
- Report times per day, week as desired
- Contexts:
- Transportation
- Household tasks
- Recreational exercise, sports, active hobbies
- Vigorous and moderate intensity separately
- Frequency \& duration for specific activities engaged for 10+ min
- Note: no occupational activity questions

Objective Measurement by Accelerometer

PA Monitors in NHANES 2003-2006

- Ages 6 y +
- Wheelchair-bound/non-ambulatory excluded
- Ask for 7 d of wear while awake
- Take off for water activities (swim, bathe)
- Mail back monitor
- Response rate $\sim 90 \%$ (any data provided/eligible)
- Valid day
- 10 h of wear
- Valid record for analysis
- 4 or more valid days
- Waist-worn
- Locomotor cutpoints

COMPARISON OF SELF-REPORT AND ACCELEROMETER

Category Agreement (\%) (~ PAG Adherence)

40.6 \% categorically agree
60.9\% report meeting PAG
9.6\% have 150 + bouted minutes by accelerometer

NHANES 2003-6 age 18+, weighted, $\mathrm{n}=6576$

A Deeper Dive

- 6092 adults (ages $20 \mathrm{y}+$) with questionnaire data and accelerometer wear for 4-7 days
- Questionnaire (Q)
- Summed all minutes reported as moderate or greater intensity
- Accelerometer (A)
- Summed moderate intensity or greater $(A C \geq 2020)$ minutes in "bouts"
- Categorized by zero, non-zero minutes from Q and A
- Calculated minutes of moderate or greater intensity PA within each category and instrument
- Divided non-zero groups into quintiles for classification agreement

Many Minutes Are Reported with Zero Measured Bouts

Category Agreement: Men Ages 20-59 y

Accel. Categ	Category Based on Self-Report						Total
	0	1	2	3	4	5	
0	4.89	9.61	7.52	5.36	6.39	5.42	39.20
1	1.71	1.95	2.61	2.23	2.06	1.78	12.34
2	1.33	2.06	1.95	2.73	1.56	2.42	12.04
3	0.94	2.12	2.22	2.10	2.65	2.21	12.24
4	0.58	1.44	2.14	2.83	2.58	2.49	12.07
5	0.76	0.89	1.46	2.68	2.72	3.59	12.11
Total	10.22	18.08	17.90	17.94	17.96	17.90	100.0

Values are weighted percent within each cell

Category Agreement: Men Ages 20-59 y

Accel. Categ	Category Based on Self-Report						Total
	0	1	2	3	4	5	
0	89	9.6	7.52	5.36	6.39	5.42	39.20
1		1.95		2.23	2.06	1.78	12.34
2	1.33		1.95		1.56	2.42	12.04
3	0.94	2.12		2.10		2.21	12.24
4	0.58	1.44	2.1		2.58		12.07
5	0.76	0.89	1.46	2.68		3.59	12.11
Total	10.22	18.08	17.90	17.94	17.96	17.90	100.0
					17.1 \% agree		

Values are weighted percent within each cell

Category Agreement: Men Ages 20-59 y

Accel. Categ	Category Based on Self-Report						Total
	0	1	2	3	4	5	
0	4.89	9.61	7.52	5.36	6.39	5.42	39.20
1	1.71	1.95	2.61	2.23	2.06	1.78	12.34
2	1.33	2.06	1.95	2.73	1.56	2.42	12.04
3	0.94	2.12	2.22	2.10	2.65	2.21	12.24
4	0.58	1.44	2.14	2.83	2.58	2.4	12.07
5	0.76	0.89	1.46	2.68	2.72	3.59	12.11
Total	10.22	18.08	17.90	17.94	17.96	17.90	100.0
					48.7 \% agree +/- 1 category		

Values are weighted percent within each cell

Category Agreement: Men Ages 20-59 y

Accel. Categ	Category Based on Self-Report						Total
	0	1	2	3	4	5	
0	4.89	9.61	7.52	5.36	6.39	5.42	39.20
1	1.71	1.95	2.61	2.23	2.06	1.78	12.34
2	1.33	2.06	1.95	2.73	1.56	2.42	12.04
3	0.94	2.12	2.22	2.10	2.65	2.21	12.24
4	0.58	1.44	2.14	2.83	2.58	2.49	12.07
5	0.76	0.89	1.46	2.68	2.72	3.59	12.11
Total	10.22	18.08	17.90	17.94	17.96	17.90	100.0

Note distribution across accelerometer categories for low active individuals

Values are weighted percent within each cell

Effect of Relaxing Intensity and Bout Criteria

Men, 20-59 years

\% Agree	$\mathbf{2 0 2 0}$		Cutpoint	$\mathbf{7 6 0}$ Cutpoint	
	$\mathbf{1 0} \mathbf{~ m i n}$	$\mathbf{5} \mathbf{~ m i n}$	$\mathbf{1 0} \mathbf{~ m i n}$	$\mathbf{5} \mathbf{~ m i n}$	
Exactly	17.1	20.2	21.7	20.2	
+/- 1 category	48.7	52.3	55.3	53.4	

Women, 20-59 years

\% Agree
Exactly
$+/-1$ category

$\mathbf{2 0 2 0}$ Cutpoint	
$\mathbf{1 0} \mathbf{~ m i n}$	$\mathbf{5} \mathbf{~ m i n}$
20.8	23.6
49.8	57.8

CONCEPTUALIZATION

Physical Activity Conceptual Framework

A Conceptual Model for Measurement of Physical Activity

Behavior

- Actions and inactions of people (individuals or groups) in response to internal and/or external stimuli
- The propensity of an individual to move rather than the actual quantification of movement
- Blends psychosocial/environmental context with groupings of activities

Activities

- Complex skills formed by fundamental movement patterns: locomotor (e.g., walking, running), non-locomotor (e.g., balancing, twisting), and manipulative (e.g., kicking, throwing) - or, in some cases, simply the fundamental movements
- Movement in the context of space, effort, quality, and relationship of body parts

Motion

- Instantaneously detected bodily acceleration signals

Sources of Poor Agreement

- Intensity assessment
- Accelerometer - Absolute intensity ~3 MET
- Questionnaire - Relative intensity
- Bout length assessment
- Questionnaire asks for activities of at least 10 minutes
- Activities with movement patterns of shorter duration may get included
- Behavior and motion are related, but not equivalent

ACCELEROMETER AND BIOMARKERS

Stronger Biomarker Associations

Biomarker	Self-report		Accelerometer	
	Beta (SE)	Adj. Wald F	Beta (SE)	Adj. Wald F
SBP	0.01 (0.03)	0.23	-0.43 (0.14)	8.89**
BMI	-0.04 (0.01)	14.95***	-0.77(0.08)	86.71****
HDL (mg/dL)	0.10 (0.03)	8.54**	1.41 (0.27)	27.77****
Glycohemoglobin	-0.004 (0.001)	7.91**	-0.05 (0.01)	47.11****
Glucose	0.01 (0.07)	0.06	-1.67(0.30)	30.77****
Insulin ($\mu \mathrm{U} / \mathrm{mL}$)	-0.08 (0.03)	10.15**	-1.11 (0.12)	81.53****
$\begin{aligned} & * * \mathrm{p}<0.01 \\ & * * * \mathrm{p}<0.001 \\ & * * * * \mathrm{p}<0.0001 \end{aligned}$				

Minutes in bouts, Beta per 10 min unit
Atienza et al., 2011 MSSE

DOSE AND MORTALITY

One (of several) Mortality Analyses

Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults ${ }^{1-3}$

Charles E Matthews, ${ }^{4} *$ Sarah Kozey Keadle, ${ }^{4}$ Richard P Troiano, ${ }^{5}$ Lisa Kahle, ${ }^{7}$ Annemarie Koster ${ }^{9}$ Robert Brychta, ${ }^{8}$ Dane Van Domelen, ${ }^{10}$ Paolo Caserotti, ${ }^{10}$ Kong Y Chen, ${ }^{8}$ Tamara B Harris, ${ }^{11}$ and David Berrigan ${ }^{6}$

- NHANES 2003-2006 participants ages 40 y+ (n=4840 analyzed)
- Followed for mortality until 12/31/2011
- 700 deaths
- Isotemporal substitution model

AJCN in press

Accelerometer Dose and Mortality

Adjusted for age, race, education, smoking, alcohol, diabetes, CHD, cancer, stroke, mobility limitations, BMI. Model fit is non-linear and non-wear time was trimmed at the $1^{\text {st }}$ and $95^{\text {th }}$ percentiles.

Accelerometer Dose and Mortality

C. Moderate-vigorous intensity ($\mathrm{AC} \geq 760$)

Other Issues to Name-Check

- Absolute vs. relative intensity
- Device plus algorithm/cutpoint, not device alone
- Accuracy vs precision (or research vs consumer devices)
- Especially in light of devices for self-monitoring
- Effect of wear location for devices
- What is measured at wrist vs waist?
- Most important type of PA may not be aerobic

Thank you

Discussion

Meeting 2

Committee Discussion

Physical Activity and Musculoskeletal Health

Kathy Janz, Ken Powell, Rick Troiano

PAG 2018 Meeting 2, Oct 27-28, 2016

Lab, animal, \& clinical studies indicate that osteogenic activities are high impact forces and/or high muscle forces applied rapidly, oddly, and with breaks.

Control Athlete

Cross Section Distal Tibia:pQCT
These activities effect the material, geometry, \& micro architecture of whole bone.

Animal, lab, \& clinical studies indicate an

 impact* force threshold $\sim 3 \times$ BW needed to improve bone strength.
*Note High Muscle Forces (Power) Also Improve Bone Strength.

Multiple bone attributes define bone strength.

- Material: bone mineral mass and density
- Geometry: size, shape, distribution of whole bone
- Micro-architecture: porosity of trabecular \& cortical bone

DXA, mid 1980s

pQCT, early 2000s

What we hope to accomplish.

- Better quantification of physical activity dimensions that influence musculoskeletal health.
- Improve understanding of dose-response
- Challenge to create dose measures of forces (impact \& muscle) that can be understood outside of resistance training and accomplished safely during daily activity.

What we are asking (with a focus on adult literature):

1. What are the most helpful physical activities for bone health and muscle strength?
2. Why those activities?
3. How much and how strong is the evidence to support dose for these activities?

Who we are asking:

- Wendy Khort, University of Colorado, physiology of aging, 2008 PAG, 2004 ACSM Position
- Jon Tobias, University of Bristol, everyday quantification bone loading
- Heather McKay, Director Hip Health \& Mobility Centre, University of British Columbia
- Katherine Brooke-Wavell, Loughborough University, interventions athletes and adults

Meeting 2

Committee Discussion

Meeting 2

Meeting Adjourned

Richard D. Olson, MD, MPH Designated Federal Officer

